
Strand Persistency
Vaibhav Gogte, William Wang$, Stephan Diestelhorst$,

Peter M. Chen, Satish Narayanasamy, Thomas F. Wenisch

NVMW
03/12/2019

$

Promise of persistent memory (PM)

2

Non-volatility

Performance

Density

Promise of persistent memory (PM)

3

Non-volatility

Performance

Density
“Optane DC Persistent Memory will be
offered in packages of up to 512GB per stick.”

“… expanding memory per CPU socket
to as much as 3TB.”

*

* Source: www.extremetech.com

Promise of persistent memory (PM)

4

Non-volatility

Performance

Density
“Optane DC Persistent Memory will be
offered in packages of up to 512GB per stick.”

“… expanding memory per CPU socket
to as much as 3TB.”

*

* Source: www.extremetech.com

Byte-addressable, load-store interface to durable storage

Persistent memory system

5

DRAM Persistent Memory (PM)

CPU

Writeback caches

Persistent memory system

6

DRAM Persistent Memory (PM)

CPU

Writeback caches

Failure

Persistent memory system

7

DRAM

Recovery

Persistent Memory (PM)

Recovery can inspect PM data-structures to restore system to a consistent state

CPU

Writeback caches

Failure

Recovery requires PM access ordering

8

CPU

Writeback caches

PM

St a = x

St b = y

for recovery

Recovery requires PM access ordering

9

CPU

Writeback caches

PM
St b = y

St a = x

Intel x86 primitives
Consistency
modelSt a = x

St b = y

for recovery

Recovery requires PM access ordering

10

CPU

Writeback caches

PM
St b = y

St a = x

CLWB(b)

Intel x86 primitives
Consistency
model

Persistency
model

CLWB(a)
St a = x

St b = y

for recovery

Recovery requires PM access ordering

11

CPU

Writeback caches

PM
St b = y

St a = x

CLWB(b)

SFENCE

Intel x86 primitives
Consistency
model

Persistency
model

CLWB(a)
St a = x

St b = y

for recovery

Recovery requires PM access ordering

12

Hardware systems provide primitives to express persist order to PM

CPU

Writeback caches

PM
St b = y

St a = x

CLWB(b)

SFENCE

Intel x86 primitives
Consistency
model

Persistency
model

CLWB(a)
St a = x

St b = y

for recovery

Hardware imposes overly strict constraints

13

St A = 1; CLWB (A)
St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

Ideal DAG

Hardware imposes overly strict constraints

14

St A = 1; CLWB (A)
St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

Ideal DAG

St A = 1; CLWB (A)
SFENCE

St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

DAG 1

Hardware imposes overly strict constraints

15

St A = 1; CLWB (A)
St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

Ideal DAG

St A = 1; CLWB (A)
SFENCE

St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

DAG 1

St A = 1 ; CLWB (A)
St C = 3; CLWB (C)

SFENCE
St B = 2; CLWB (B)

A

B

C

DAG 2

Hardware imposes overly strict constraints

16

Primitives in existing hardware systems overconstrain PM accesses

St A = 1; CLWB (A)
St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

Ideal DAG

St A = 1; CLWB (A)
SFENCE

St B = 2; CLWB (B)
St C = 3; CLWB (C)

A

B
C

DAG 1

St A = 1 ; CLWB (A)
St C = 3; CLWB (C)

SFENCE
St B = 2; CLWB (B)

A

B

C

DAG 2

Contributions
• Employ strand persistency [Pelley14]

– Hardware ISA primitives to specify precise ordering constraints

• Comprises two primitives: PersistBarrier and NewStrand
– Can encode an arbitrary DAG

• Map language-level persistency models to ISA level primitives
– Leverage strand persistency to build persistency models efficiently

17

Contributions
• Employ strand persistency [Pelley14]

– Hardware ISA primitives to specify precise ordering constraints

• Comprises two primitives: PersistBarrier and NewStrand
– Can encode an arbitrary DAG

• Map language-level persistency models to ISA level primitives

– Leverage strand persistency to build persistency models efficiently

18

Strand persistency improves perf. of language persistency models by 21.4% (avg.)

Outline
• Contributions
• Example: Failure atomicity
• Existing hardware primitives
• Strand persistency
• Evaluation

19

Example: Failure atomicity

20

Failure-atomicity:
Which group of stores persist atomically?

atomic_begin()

x = 100;

y = 200;

atomic_end()

Failure-atomic
region

Example: Failure atomicity

21

Failure-atomicity:
Which group of stores persist atomically?

Failure-atomicity limits state that recovery can observe after failure

atomic_begin()

x = 100;

y = 200;

atomic_end()

Failure-atomic
region

Undo-logging for failure atomicity

22

Init: x = 0; y = 0

atomic_begin()

x = 1;

y = 2;

atomic_end()

persistUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

Undo-logging for failure atomicity

23

Init: x = 0; y = 0

atomic_begin()

x = 1;

y = 2;

atomic_end()

Failure-
atomic

persistUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

Undo logging steps ordered to ensure failure-atomicity

Undo-logging for failure atomicity

24

Init: x = 0; y = 0

atomic_begin()

x = 1;

y = 2;

atomic_end()

Failure-
atomic

persistUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

Undo logging steps ordered to ensure failure-atomicity

Hardware imposes stricter constraints

25

atomic_begin()
x = 1;
y = 2;

atomic_end()

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)

Ideal ordering

Hardware imposes stricter constraints

26

atomic_begin()
x = 1;
y = 2;

atomic_end()
Log(Ly,y)
CLWB(Ly)

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Store(y,2)

SFENCE ordering

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)

Ideal ordering

SFENCE

SFENCE

Hardware imposes stricter constraints

27

atomic_begin()
x = 1;
y = 2;

atomic_end()
Log(Ly,y)
CLWB(Ly)

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Store(y,2)

SFENCE ordering

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)

Ideal ordering

SFENCE

SFENCE

Hardware imposes stricter constraints

28

atomic_begin()
x = 1;
y = 2;

atomic_end()
Log(Ly,y)
CLWB(Ly)

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Store(y,2)

SFENCE ordering

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)

Ideal ordering

SFENCE

SFENCE

Strand persistency enables persist concurrency
• Provides primitives to express precise persist order

29

Persist C

A

B

C

Persist A

Persist B

Strand persistency enables persist concurrency
• Provides primitives to express precise persist order

30

Persist C

A

B

C

PersistBarrierOrders persists within a thread ß

Persist A

Persist B

Strand persistency enables persist concurrency
• Provides primitives to express precise persist order

31

Persist C

A

B
CPersistBarrierOrders persists within a thread ß

NewStrandInitiates new stream of persists ß

Persist A

Strand 0 Strand 1

Persist B

Strand persistency enables persist concurrency
• Provides primitives to express precise persist order

32

Persist C

A

B
PersistBarrierOrders persists within a thread ß

NewStrandInitiates new stream of persists ß

Persist A

Strand 0 Strand 1

strand

Persist B
C

Strand persistency enables persist concurrency
• Provides primitives to express precise persist order

33

Persist C

A

B
PersistBarrierOrders persists within a thread ß

NewStrandInitiates new stream of persists ß

Persist A

Strand 0 Strand 1

Persists on different strands can be issued concurrently to PM

strand

Persist B
C

What if ordering is needed across strands?
• Conflicting accesses establish persist order across strands

34

A

B

Persist A

Persist B
PersistBarrier

Strand 0 Strand 1

What if ordering is needed across strands?
• Conflicting accesses establish persist order across strands

35

A

B

A

Persist A

Persist B
PersistBarrier

C

Strand 0 Strand 1

NewStrand

PersistBarrier
Persist A

Persist C

What if ordering is needed across strands?
• Conflicting accesses establish persist order across strands

36

A

B

A

Persist A

Persist B
PersistBarrier

C

Strand 0 Strand 1

NewStrand

PersistBarrier
Persist A

Persist C

Inter-strand
order

Logging using strand persistency

37

atomic_begin()
x = 1;
y = 2;

atomic_end()

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)

Log(Lx,x)
CLWB(Lx)
PersistBarrier
Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)
PersistBarrier

NewStrand

Strand 0 Strand 1

Logging using strand persistency

38

atomic_begin()
x = 1;
y = 2;

atomic_end()

Log(Lx,x)
CLWB(Lx)

Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)

Log(Lx,x)
CLWB(Lx)
PersistBarrier
Store(x,1)

Log(Ly,y)
CLWB(Ly)

Store(y,2)
PersistBarrier

NewStrand

Strand 0 Strand 1

Need to implement log buffer that can manage concurrent log updates

Log space under strand persistency

39

Invalid Log 0 Log 1 Invalid

Persistent head atomically commits logs

Volatile tail for concurrent log creation

Log buffer

Log space under strand persistency

40

Invalid Log 0 Log 1 Invalid

Persistent head atomically commits logs

Volatile tail for concurrent log creation

Log buffer

• Failure exposes log write reorderings
– Identify valid logs in case of failure
– Record order of log creation
– Recovery rolls back partial updates using valid logs

More details in the paper

Language persistency models to ISA primitives

41

Hardware ISA ISA primitives: PersistBarrier and NewStrand

Language persistency models to ISA primitives

42

Hardware ISA ISA primitives: PersistBarrier and NewStrand

Compiler Logging impl. that map to hardware primitives

Language persistency models to ISA primitives

43

Hardware ISA ISA primitives: PersistBarrier and NewStrand

Compiler Logging impl. that map to hardware primitives

High-level languages Failure atomicity for language-level persistency models

Evaluation: Language-level persistency models
ATLAS [Chakrabarti14]

• Failure-atomic outermost critical sections

44

L1.lock();
x -= 100;
y += 100;
L2.lock();

a -= 100;
b += 100;

L2.unlock();
L1.unlock();

Evaluation: Language-level persistency models
ATLAS [Chakrabarti14]

• Failure-atomic outermost critical sections

45

L1.lock();
x -= 100;
y += 100;
L2.lock();

a -= 100;
b += 100;

L2.unlock();
L1.unlock();

Coupled-SFR [Gogte18]

• Failure-atomic synchronization-free regions

Evaluation: Language-level persistency models
ATLAS [Chakrabarti14]

• Failure-atomic outermost critical sections

46

L1.lock();
x -= 100;
y += 100;
L2.lock();

a -= 100;
b += 100;

L2.unlock();
L1.unlock();

Coupled-SFR [Gogte18]

• Failure-atomic synchronization-free regions

Integrate our logging mechanisms with ATLAS and Coupled-SFR

Methodology
• Gem5 simulator
• Workloads: write intensive micro-benchmarks

– Queue: insert/delete entries in a queue
– Hashmap: update values in persistent hash table
– Array swaps: random swaps of array elements
– RBTree: insert/delete entries in red-black tree
– TPCC: new order transaction from TPCC

47

Performance evaluation

48

0
5

10
15
20
25
30
35

Queue Hashmap Array
swap

RBTree TPCC Mean

Pe
rf.

 im
pr

ov
em

en
t (

in
 %

)

ATLAS Coupled-SFR

Improves performance of ATLAS by up to 29.9% (18.2% avg.)

Improves performance of Coupled-SFR by up to 34.5% (21.4% avg.)

Performance evaluation

49

0
5

10
15
20
25
30
35

Queue Hashmap Array
swap

RBTree TPCC Mean

Pe
rf.

 im
pr

ov
em

en
t (

in
 %

)

ATLAS Coupled-SFR

Conclusion
• Strand persistency to precisely order persists
• Two primitives: PersistBarrier and NewStrand

– Work together to relax ordering constraints in undo logging

• Evaluation using language-level persistency models
• Performance improvement of up to 34.5%

50

Strand Persistency
Vaibhav Gogte, William Wang$, Stephan Diestelhorst$,

Peter M. Chen, Satish Narayanasamy, Thomas F. Wenisch

NVMW
03/12/2019

$

