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Recovery requires PM access ordering
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Contributions
• Employ strand persistency [Pelley14]

– Hardware ISA primitives to specify precise ordering constraints
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• Map language-level persistency models to ISA level primitives
– Leverage strand persistency to build persistency models efficiently
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Strand persistency improves perf. of language persistency models by 21.4% (avg.)



Outline
• Contributions
• Example: Failure atomicity
• Existing hardware primitives
• Strand persistency
• Evaluation
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Failure-atomicity: 
Which group of stores persist atomically?
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Strand persistency enables persist concurrency
• Provides primitives to express precise persist order
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What if ordering is needed across strands?
• Conflicting accesses establish persist order across strands
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What if ordering is needed across strands?
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Logging using strand persistency
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Logging using strand persistency
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Log space under strand persistency
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Invalid Log 0 Log 1 Invalid

Persistent head atomically commits logs

Volatile tail for concurrent log creation

Log buffer

• Failure exposes log write reorderings
– Identify valid logs in case of failure
– Record order of log creation
– Recovery rolls back partial updates using valid logs 

More details in the paper
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Language persistency models to ISA primitives
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Hardware ISA ISA primitives: PersistBarrier and NewStrand

Compiler Logging impl. that map to hardware primitives

High-level languages Failure atomicity for language-level persistency models



Evaluation: Language-level persistency models
ATLAS [Chakrabarti14]
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L2.unlock();
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• Failure-atomic synchronization-free regions

Integrate our logging mechanisms with ATLAS and Coupled-SFR



Methodology
• Gem5 simulator 
• Workloads: write intensive micro-benchmarks

– Queue: insert/delete entries in a queue
– Hashmap: update values in persistent hash table
– Array swaps: random swaps of array elements
– RBTree: insert/delete entries in red-black tree
– TPCC: new order transaction from TPCC
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Performance evaluation
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Conclusion
• Strand persistency to precisely order persists
• Two primitives: PersistBarrier and NewStrand

– Work together to relax ordering constraints in undo logging

• Evaluation using language-level persistency models
• Performance improvement of up to 34.5%
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