
LeapIO: Efficient and Portable Virtual NVMe Storage
on ARM SoCs

Huaicheng Li, Mingzhe Hao
University of Chicago

Stanko Novakovic
Microsoft Research

Vaibhav Gogte
University of Michigan

Sriram Govindan
Microsoft

Dan R. K. Ports, Irene Zhang,
Ricardo Bianchini
Microsoft Research

Haryadi S. Gunawi
University of Chicago

Anirudh Badam
Microsoft Research

Abstract

Today’s cloud storage stack is extremely resource hungry,
burning 10-20% of datacenter x86 cores, a major “storage tax”
that cloud providers must pay. Yet, the complex cloud stor-
age stack is not completely offload-ready to today’s IO accel-
erators. We present LeapIO, a new cloud storage stack that
leverages ARM-based co-processors to offload complex storage
services. LeapIO addresses many deployment challenges, such
as hardware fungibility, software portability, virtualizability,
composability, and efficiency. It uses a set of OS/software tech-
niques and new hardware properties that provide a uniform
address space across the x86 and ARM cores and expose vir-
tual NVMe storage to unmodified guest VMs, at a performance
that is competitive with bare-metal servers.
CCS Concepts. • Computer systems organization →
Cloud computing;Client-server architectures; System
on a chip; Real-time system architecture.
Keywords.Data Center Storage; ARMSoC;NVMe; SSD; Vir-
tualization; Performance; Hardware Fungibility

ACM Reference Format:

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte,

Sriram Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini,

Haryadi S. Gunawi, and Anirudh Badam. 2020. LeapIO: Efficient

and Portable Virtual NVMe Storage on ARM SoCs. In Proceedings

of the Twenty-Fifth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS

’20), March 16–20, 2020, Lausanne, Switzerland. ACM, New York,

NY, USA, 15 pages. h�ps://doi.org/10.1145/3373376.3378531

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00

h�ps://doi.org/10.1145/3373376.3378531

1 Introduction

Cloud storage has improved drastically in size and speed in
the last decade, with a market size expected to grow to $88
billion by 2022 [11].With this growth, making cloud storage
efficient is paramount. On the technical side, cloud storage
is facing two trends, the growing complexity of cloud drives
and the rise of IO accelerators, both unfortunately have not
blended to the fullest extent.
First, to satisfy customer needs, today’s cloud providers

must implement a wide variety of storage (drive-level) func-
tions as listed in Table 1. Providers must support both lo-
cal and remote isolated virtual drives with IOPS guaran-
tees. Users also demand drive-level atomicity/versioning,
and not tomention other performance, reliability, and space-
related features (checksums, deduplication, elastic volumes,
encryption, prioritization, polling for ultra-low latencies,
striping, replication, etc.) that all must be composable. Last
but not least, future cloud drives must support fancier inter-
faces [19, 24, 27, 63, 70].
As a result of these requirements, the cloud storage stack

is extremely resource hungry. Our experiments suggest that
the cloud provider may pay a heavy tax for storage: 10–20%
of x86 cores may have to be reserved for running storage
functions. Ideally, host CPU cores are better spent for pro-
viding more compute power to customer VMs.

The second trend is the increasing prevalence of IO ac-
celeration technologies such as SmartSSDs [7, 16], Smart-
NICs [4, 8] and custom IO accelerators with attached com-
putation that can offload some functionality from the host
CPU and reduce the heavy tax burden. However, IO accel-
erators do not provide an end-to-end solution for offload-
ing real-deployment storage stacks. Today, the storage func-
tions in Table 1 cannot be fully accelerated in hardware for
three reasons: (1) the functionalities are too complex for low-
cost hardware acceleration, (2) acceleration hardware is typ-
ically designed for common-case operations but not end-to-
end scenarios, or (3) the underlying accelerated functions
are not composable.

https://doi.org/10.1145/3373376.3378531
https://doi.org/10.1145/3373376.3378531

Table 1 summarizes why the functionalities are not fully
offload ready. We use one simple case as an example. For
“local virtual SSDs,” a cloud storage provider can employ
Single Root IO Virtualization (SR-IOV) SSDs [20] where
IOPS/bandwidth virtualization management is offloaded to
the SSD hardware, freeing the host from such a burden.
However, the cloud provider might want to combine virtu-
alization with aggressive caching in spare host DRAM, but
in-SSD accelerators cannot leverage the large host DRAM
(i.e., not composable with other host resources) and do not
provide the same flexibility as software.
Custom IO accelerators have another downside. As accel-

eration hardware evolves, the entire fleet of servers may
never be uniform; each generation of servers will have
better, but slightly different hardware from previous ones.
Without a unifying software platform, we run the risk of
fragmenting the fleet into silos defined by their hardware
capabilities and specific software optimizations.
We observe another trend in cloud platforms: ARM co-

processors are being deployed for server workloads. This
is a more suitable alternative compared to custom accelera-
tors; ARMcores aremore general (retain x86 generality) and
powerful enough to run complex storage functions without
major performance loss.
Offloading the storage stack to ARM co-processors can

bring substantial cost savings. The bill-of-material cost of
an ARM System-on-Chip (SoC) is low and the power con-
sumed is 10W, making an annual total Cost of Ownership
(TCO) of less than ~$100 (<~3% of a typical server’s annual
TCO). In turn, this SoC frees up several x86 cores thereby
directly increasing the revenue from the services running
on the server proportional to the additional cores – annu-
ally ~$2,000 or more (20×) when the cores are used for run-
ning customer VMs and significantly higher for more lucra-
tive services. Even when accounting for typical replacement
rates, ARM SoC TCO would still be less than one year rent
of the smallest recommended VM in the cloud.
But there is a major challenge, just dropping an ARM

SoC on a PCIe slot would not be enough. We had to re-
think the entire storage stack design to meet real deploy-
ment challenges: hardware fungibility, portability, virtualiz-
ability, composability, efficiency, and extensibility (all laid
out in §2.1), which led us to designing LeapIO.

1.1 LeapIO

We present LeapIO, our next-generation cloud storage stack
that leverages ARM SoC as co-processors. To address de-
ployment goals (§2.1) in a holistic way, LeapIO employs a set
of OS/software techniques on top of new hardware capabili-
ties, allowing storage services to portably leverage ARM co-
processors. LeapIO helps cloud providers cut the storage tax
and improve utilization without sacrificing performance.
At the abstraction level we use NVMe, “the new language

of storage” [5, 17]. All involved software layers from guest

Local/remote virtual SSDs/services and caching. SR-IOV

SSDs (hardware-assisted IO virtualization) do not have access

to host DRAM. Thus local SSD caching for remote storage pro-

tocols (e.g. iSCSI [15], NVMeoF [2]) cannot be offloaded easily

from x86.

Atomic write drive. Smart transactional storage devices [58,

65] do not provide atomicity across replicated drives/servers.

Versioned drive. A multi-versioned drive that allows writers

to advance versions via atomic writes while the readers can

stick to older versions, not supported in today’s smart drives.

Priority virtual drive. Requires IO scheduling on every IO

step (e.g., through SSDs/NICs) with flexible policies, hard to

achieve in hardware-based policies (e.g., SSD-level prioritiza-

tion).

Spillover drive. Uses few GBs of a local virtual drive and spills

the remaining over to remote drives or services (elastic vol-

umes), a feature that must combine local and remote virtual

drives/services.

Replication & distribution. Accelerated cards can offload

consistent and replicated writes, but they typically depend on

a particular technology (e.g. non-volatile memory).

Other functionalities. Compression, deduplication, encryp-

tion, etc. must be composablewith the above drives, not achiev-

able in custom accelerators.

Table 1. Real storage functions, not offload ready. The table

summarizes why real cloud drive services are either not completely

offload ready or not easily composable with each other.

OSes, LeapIO runtime, to new storage services/functions all
see the same device abstraction: virtual NVMe drive. They all
communicate via the mature NVMe queue-pair mechanism
accessible via basic memory instructions pervasive across
x86 and ARM, QPI or PCIe.

On the software side, we build a runtime that hides the
NVMe mapping complexities from storage services. Our
runtime provides a uniform address space across the x86 and
ARM cores, which brings two benefits.
First, our runtime maps NVMe queue pairs across hard-

ware/software boundaries – between guest VMs running on
x86 and service code offloaded to the ARM cores, between
client- and server-side services, and between all the soft-
ware layers and backend NVMe devices (e.g., SSDs). Storage
services can now be written in user space and be agnostic
about whether they are offloaded or not.
Second, our runtime provides an efficient data path that

alleviates unnecessary copying across the software compo-
nents via transparent address translation across multiple ad-
dress spaces: guest VM, host, co-processor user and kernel
address spaces. The need for this is that while ARM SoC re-
tains the computational generality of x86, it does not retain
the peripheral generality that would allow different layers
access the same data from their address spaces.

The runtime features above cannot be achieved without
new hardware support. We require four new hardware prop-
erties in our SoC design: host DRAM access (for NVMe
queue mapping), IOMMU access (for address translation),
SoC’s DRAM mapping to host address space (for efficient
data path), and NIC sharing between x86 and ARM SoC (for
RDMA purposes). All these features are addressable from
the SoC side; no host-side hardware changes are needed.
We build LeapIO in 14,388 LOC across the runtime, host

OS/hypervisor and QEMU changes, and design the SoC us-
ing Broadcom StingRay V1 SoC (a 2-year hardware develop-
ment).
Storage services on LeapIO are “offload ready;” they can

portably run in ARM SoC or on host x86 in a trusted VM.
The software overhead only exhibits 2-5% throughput reduc-
tion compared to bare-metal performance (still delivering
0.65million IOPS on a datacenter SSD). Our current SoC pro-
totype also delivers an acceptable performance, 5% further
reduction on the server side (and up to 30% on the client)
but with more than 20× cost savings.
Finally, we implement and compose different storage

functions such as a simple RAID-like aggregation and
replication of local/remote virtual drives via NVMe-over-
RDMA/TCP/REST, an IO priority mechanism, a multi-block
atomic-write drive, a snapshot-consistent readable drive,
the first virtualized OpenChannel SSDs exposed to guest
VMs, block cache, and many more, all written in 70 to 4400
LOC in user space, demonstrating the ease of composability
and extensibility that LeapIO delivers.
Overall, we make the following contributions:

• We define and design a set of hardware properties to
make ARM-to-peripheral communications as efficient as
x86-to-peripherals.

• We introduce a uniform address space across x86, ARM
SoC and other PCIe devices (SSDs, NICs) to enable line-
rate address translations and data movement.

• We develop a portable runtime which abstracts away
hardware capabilities and exploits the uniform address
space to make offloading seamless and flexible.

• We build several novel services composed of local/remote
SSDs/services and perform detailed performance bench-
marks as well as analysis.

2 Extended Motivation

2.1 Goals

Figure 1 paints the deployment goals required in our next-
generation storage stack. As shown, the fundamental device
abstraction is NVMe virtual drive, illustrated with a “●”, be-
hindwhich are theNVMe submission and completion queue
pairs for IOmanagement. The deployment/usemodel of Lea-
pIO can be seen in Figure 1a. Here a user mounts a virtual
block drive● to her VM (guest VM) just like a regularNVMe

IO services @ user space

VM

Virtualizability
& Composability

x86 SoC

Fungibility &
Portability

or

polling

Efficiency

Extensibility

x86

minimized copy via

SoC NIC

address translation

a b

c

d

Storage
services
(not disks)

User VM

Data

NVMe drive
mapping

Virtual
NVMe drive

NVMe
storage

(local / remote)

(e.g. SSDs)

Runtime + OS

Figure 1. Goals. As described in Section 2.1.

drive. LeapIO then manages all the complex storage func-
tions behind this “simple” ●, as illustrated in the figure. We
now elaborate the goals.

a© Fungibility and portability: We need to keep
servers fungible regardless of their acceleration/offloading
capabilities. That is, we treat accelerators as opportunities
rather than necessities. In LeapIO, the storage software
stack is portable – able to run on x86 or in the SoC when-
ever available (i.e., “offload ready”) as Figure 1a illustrates.
The user/guest VMs are agnostic to what is implementing
the virtual drive.
Fungibility and portability prevent “fleet fragmentation.”

Different server generations have different capabilities (e.g.,
with/without ARM SoC, RDMA NICs or SR-IOV support),
but newer server generations must be able to provide ser-
vices to VMs running on older servers (and vice versa). Fun-
gibility also helps provisioning; if the SoC cannot deliver
enough bandwidth in peakmoments, some services can bor-
row the host x86 cores to augment a crowded SoC.

b© Virtualizability and composability: We need to
support virtualizing and composing of, not just local/remote
SSDs, but also local/remote IO services via NVMe-over-PCIe
/RDMA/TCP/REST. With LeapIO runtime, as depicted in
Figure 1b, a user can obtain a local virtual drive that is
mapped to a portion of a local SSD that at the same time
is also shared by another remote service that glues multi-
ple virtual drives into a single drive (e.g., RAID). A storage
service can be composed on top of other remote services.

c© Efficiency: It is important to deliver performance
close to bare metal. LeapIO runtime must perform contin-
uous polling on the virtual NVMe command queues as the
proxy agent between local/remote SSD and services. Fur-
thermore, ideally services must minimize data movement
between different hardware/software components of a ma-
chine (on-x86 VMs, in-SoC services, NICs, and SSDs), which
is achieved by LeapIO’s uniform address space (Figure 1c).

d© Service extensibility: Finally, unlike traditional
block-level services that reside in the kernel space for per-
formance, or FPGA-based offloadingwhich is difficult to pro-
gram, LeapIO enables storage services to be implemented at
the user space (Figure 1d), hence allowing cloud providers to
easily manage, rapidly build, and communicate with a vari-
ety of (trusted) complex storage services.

2.2 Related Work

A
cc

U
ni

Po
rt
vN
V
M
e

U
sr

sV
ir
t

A ActiveFlash [76]
√

Biscuit [40]
√ √ √

IDISKS [46]
√

INSIDER [69]
√

LightStore [35]
√ √

SmartSSD [44]
√

SR-IOV [20]
√ √ √

Summarizer [50]
√ √ √

B Decibel [60]
√ √

IOFlow [75]
√

LightNVM [32]
√ √ √

NVMeoF [2]
√ √ √

SDF [63]
√ √

SPDK [78]
√ √

C Helios [61]
√ √

Reflex [49]
√ √

Solros [59]
√ √

VRIO [51]
√

D AccelNet [39]
√

Bluefield [4]
√ √ √

FlexNIC [45]
√ √

Floem [64]
√ √

KV-Direct [54]
√

NetCache [42]
√ √

NICA [38]
√

UNO [52]
√ √

E GPUfs [74]
√ √

HeteroISA [30]
√ √

HEXO [62]
√ √

OmniX [73]
√ √ √

Popcorn [31]
√ √

LeapIO
√ √ √ √ √ √

Table 2. Related Work (§2.2). The columns (dimensions of sup-

port) are as follow. Acc: Hardware acceleration; Uni: Unified ad-

dress space; Port: Portability/fungibility;vNVMe: Virtual NVMe ab-

straction; Usr: User-space/software-defined storage functions; sVirt:

Simultaneous local+remote NVMe virtualization. The row (related

work) categories are: A. Storage accelartion/offloading; B. Software-

defined storage; C. Disaggregated/split systems; D. Programmable

NICs; and E. Heterogeneous system designs. We reviwed in detail

a total of 85 related papers (not all shown here), other works in-

clude [25, 26, 28, 29, 33, 34, 37, 43, 47, 48, 53, 56, 57, 66–68, 70–72, 77].

To achieve all the goals above, just dropping in ARM
SoCs on the PCIe slots in the server would not be enough.
The features above require new hardware capabilities and
OS/hypervisor-level support. We reviewed the growing lit-
erature in IO accelerator and virtual storage and did not find
a single technology that meets our needs. Below we sum-
marize our findings as laid out in Table 2, specifically in the
context of the six dimensions of support (represented by the
last six columns).
First, many works highlight the need for IO accelera-

tors (the “Acc” column), e.g., with ASIC, FPGA, GPU, Smart
SSDs, and custom NICs. In our case, the accelerator is a cus-
tom ARM-based SoC (§3.1) for reducing the storage tax.
When using accelerators, it is desirable to support a

unified address space (Uni) to reduce data movement.
While most work in this space focus on unifying two
address spaces (e.g., host-GPU, host-coprocessor, or host-
SSD spaces), we have to unify three address spaces (guest-
VM/host/SoC) with 2-level address translations (§3.4).

One uniqueness of our work is addressing portability/
fungibility (Port) where LeapIO runtime and arbitrary stor-
age functions can run on either the host x86 or ARM SoC,
hence our SoC deployment can be treated as an acceleration
opportunity rather than a necessity. In most of other works,
only specifically provided functions (e.g., caching, replica-
tion, or consensus protocol) are offloadable.
We chose virtual NVMe (vNVMe) as the core abstraction

such that we can establish an end-to-end storage communi-
cation from guest VMs to the remote backend SSDs through
many IO layers/functions that speak the same NVMe lan-
guage (§3.3). With this for example, LeapIO is the first plat-
form that enables virtual SSD channels (backed by Open-
Channel SSDs) to be composable for guest VMs (§5.3).
All of the above allow us to support user-space/software-

defined storage functions (Usr) just like many other works.
In LeapIO, user-level storage functions can be agnostic to
the underlying hardware (x86/SoC, local/remote storage).
With this for example, LeapIO is the first to support user-
space NVMeoF with stable performance (§5.1).
Finally, to support “spillover drive” (Table 1), LeapIO is

the first system that supports simultaneous local and remote
NVMe virtualization (the sVirt column). Related work like
Bluefield with hardware NVMe emulation [4, 14] cannot
achieve this because it can only support running in either
local or remote virtualization mode (e.g., initiator or target),
but not both simultaneously in composable ways.
Overall, our unique contribution is combining these six

dimensions of support to address our deployment goals. We
also would like to emphasize that our work is orthogonal
to other works. For example, in the context of GPU/FPGA
offloading, application computations can be offloaded there,
but when IOs are made, the storage functions are offloaded
to our ARM SoC. In terms of virtual NIC, its network QoS

N
IC

ARM

NIC**

S
S
D

DRAM

PCIe bus

SoC

DRAM
host

side

MMU
1

x86

23

4

SoC

card

PCIe

slot

Figure 2. Hardware requirements. The figure is explained

in Section 3.1. “NIC**” means an optional feature of the SoC. x→y

means x should be exposed or accessible to y.

capability can benefit remote storage QoS. In terms of frame-
work/language level support for in-NIC/Storage offloading,
it can be co-locatedwith LeapIO to accelerate server applica-
tions. In terms of accelerator level support for OS services or
OS support for accelerators, LeapIO can benefit from such
designs for more general purpose application offloading.

3 Design

We now present the design of LeapIO from different angles:
hardware (§3.1), software (§3.2), control flow (§3.3), data
path (§3.4), and x86/ARM portability (§3.5).
We first clarify several terms: “ARM” denotes cheaper,

low-power processors suitable enough for storage func-
tions (although their architecture need not be ARM’s); “SoC”
means ARM-based co-processors with ample memory bun-
dled as a PCIe SoC; “x86” implies the powerful and expen-
sive host CPUs (although can be non x86); “rNIC” stands
for RDMA-capable NIC; “SSD” means NVMe storage; “func-
tions” and “services” are used interchangeably.

3.1 The Hardware View

We begin with the hardware view.
In the left side of Figure 2, the top area is the host side

with x86 cores, host DRAM, and IOMMU. In the middle is
the PCIe bus connecting peripheral devices. In the bottom
right is our SoC card (bold blue edge) containing ARM cores
and on-SoC DRAM. Our SoC and rNIC are co-located on a
single PCIe card as explained later. The right side in Figure
2 shows a real example of our SoC deployment. In terms of
hardware installation, the SoC is simply attached to a PCIe
slot. However, easy offloading of services to the SoC while
maintaining performance requires four hardware capabili-
ties (labels 1© to 4© in Figure 2), which all can be addressed
from the SoC vendor side.

1© HW1: Host DRAM access by SoC. The SoC must
have a DMA engine to the host DRAM (just like rNIC). How-
ever, it must allow the user-space LeapIO runtime (running
in the ARM SoC) to access the DMA engine to reach the
location of all the NVMe queue pairs mapped between the
on-x86 user VMs, rNIC, SSD, and in-SoC services (§3.3).

2© HW2: IOMMU access by SoC. The trusted in-SoC
LeapIO runtime must have access to an IOMMU coherent
with the host in order to perform page table walk of the
VM’s address space that submitted the IO. When an on-x86
user VM accesses a piece of data, the data resides in the host
DRAM, but the VM only submits the data’s guest address.
Thus, the SoC must facilitate the LeapIO runtime to trans-
late guest to host physical addresses via the IOMMU (§3.4).

3© HW3: SoC’s DRAM mapped to host. The on-SoC
DRAM must be visible by the rNIC and SSD for zero-copy
DMA. For this, the SoC must expose its DRAM space as a
PCIe BAR (base address register) to the host x86. The BAR
will then be mapped as part of the host physical address
space by the host OS. With this capability, main hardware
components such as rNIC, SSD, host x86, and the SoC can
read/write data via the host address space without routing
data back and forth (§3.4).

4© HW4: NIC sharing. The NIC must be “shareable”
between the host x86 and ARM SoC because on-x86 VMs,
other host agents, and in-SoC services are all using the NIC.
NIC can be used by the host to serve VM traffic as well as by
the SoC for offloaded remote storage functions. One possi-
bility is to co-locate the ARM cores and the NIC on the same
PCIe card (“NIC**” in Figure 2), hence not dependent on the
external NIC capabilities (§4).

3.2 The Software View

Now we move to the software view. To achieve all the goals
in §2.1, LeapIO software is relatively complex, thus we de-
cide to explain it by first showing the high-level stages of
the IO flows, as depicted in stages a© to f© in Figure 3.

a© User VM. On the client side, a user runs her own ap-
plication and guest OS of her choice on a VMwhere nomod-
ification is required. For storage, the guest VM runs on the
typical NVMe device interface (e.g., /dev/nvme0n1) exposed
by LeapIO as a queue pair (represented by ●) containing
submission and completion queues (SQ and CQ) [1]. This
NVMe drive which can be a local (ephemeral) drive or some-
thing more complex will be explained later.

b© Host OS. We add a capability into the host OS for
building queue-pair mappings (more in 3.3) such that the
LeapIO runtime c© sees the same NVMe command queue
exposed to the VM. The host OS is not part of the datapath.

c©Ephemeral storage. If the user VM utilizes local SSDs
(e.g., for throughput), the requests will be put into the NVMe
queue mapped between the LeapIO runtime and the SSD
device (the downward ●—●). Because the SSD is not in the
SoC (not inside the bold edge), they need to share the NVMe
queue stored in the host DRAM (more in §3.3).

d© Client-side LeapIO runtime and services. The
client-side runtime (shaded area) represents the LeapIO run-
time running on the ARM SoC (bold blue edge). This run-
time “glues” all the NVMe queue pairs (●—●) and end-
to-end storage paths over a network connection (◆—◆).

x86

Client

NVMe queue-pairs mapping

Arbitrary storage functions

TCP /

RDMA

a

or

OS

User

SSD NIC

OS OS

Server

NIC SSD

f ()f ()

f ()

SoC

=

VM

e

f

d

b host

SoC

c

Runtime

Figure 3. Software view. The figure shows the software design

of LeapIO (Section 3.2). For simplicity, we use two nodes, client and

server, running in a datacenter. The arrows in the figure only repre-

sent the logical control path, while the data path is covered in §3.4.

Our runtime and storage services (the shaded/pink area) can trans-

parently run in the SoC (as shown above) or on the host x86 via our

“SoCVM ” support (in §3.5).

To quickly process new IOs, the LeapIO runtime polls the
VM-side NVMe submission queue that has been mapped
to the runtime address space (●—●). This runtime enables
services to run arbitrary storage functions in user space
(“f ()”, see Table 1) that simply operate using NVMe inter-
face. The functions can then either forward the IO to a local
NVMe drive (●) and/or a remote server with its own SoC
via RDMA or TCP (◆). Later, §3.4 will provide details of the
data path.
At this stage, we recap the aforementioned benefits of

LeapIO. First, the cloud providers can develop and de-
ploy the services in user space (extensibility). The LeapIO
runtime also does not reside in the OS, hence all data
transfers bypass the OS level (both host OS and SoC-side
OS are skipped). The SoC-side OS can be any standard
OS. Second, with mapped queue pairs, the runtime em-
ploys polling to maintain fast latency and high through-
put (efficiency). Third, VMs can obtain a rich set of block-
oriented services via virtual NVMe drives (virtualizabil-
ity/composability). Most importantly, although in the figure,
the LeapIO runtime and services are running in the SoC,
they are also designed to transparently run in a VM on x86
to support older servers (portability), which we name the
“SoCVM ” feature (more in §3.5).

e© Remote access (NIC). If the user stores data in a re-
mote SSD or service, the client runtime simply forwards the
IO requests to the server runtime via TCPor RDMA through
the NIC (◆—◆). Note that the NIC is housed in the same
PCIe slot (dotted bold edge) as the ARM SoC in order to ful-
fill property HW4 (shareable rNIC).

f© Server-side LeapIO runtime and services. The
server-side LeapIO runtime prepares the incoming com-
mand and data by polling the queues connected to the client

DRAM

VM

NVMe commands ex: write(diskAddr, memAddr)

Host

SoC
a a

SSD

Actual location

b

b

NVMe queue-pairs mapping

DMA-ed

DMA-ed

DRAM

Figure 4. Control setup. The figure shows the mappings of

NVMe queue pairs to pass IO commands across the hardware and

software components in LeapIO, as described in §3.3.

side (◆). It then invokes the server-side storage functions
f () that also run in the user level within the SoC. The server-
side service then can forward/transform the IOs to one or
more NVMe drives (●) or remote services. The figure shows
the access path to its local SSD (the right-most ●—●).

3.3 The Control Setup

Wenow elaborate on how LeapIO provides theNVMe queue-
pair mapping support to allow different components in Lea-
pIO to use the sameNVMe abstraction to communicatewith
each other. To illustrate this, we use the two logical queue-
pair mappings (two ●—●) in the client side of Figure 3 and
show the physical mappings in Figure 4a-b.

a©VM-runtime queue mapping. This is the mapping
between the user VM and the in-SoC client runtime (red
lines). The actual queue-pair location is in the host DRAM
(middle row). The user VM (upper left) can access this queue
pair via a standard mapping of guest to host address (via
hypervisor-managed page table of the VM). For the in-SoC
runtime to see the queue pair, the location must be mapped
to the SoC’s DRAM (upper right), which is achieved via
DMA. More specifically, our modified host hypervisor es-
tablishes an NVMe admin control channel with LeapIO run-
time. There is a single admin NVMe queue pair that resides
in the host DRAM but it is DMA-ed by the host to the run-
time address space, thus requiring propertyHW1 (§3.1).

b©Runtime-SSD queue mapping. This is the mapping
between the in-SoC runtime with the SSD (orange lines).
Similar to the prior mapping, the hypervisor provides to
the SSD the address ranges within the memory mapped re-
gion. The SSD does not have to be aware of the SoC’s pres-
ence. Overall, the memory footprint of a queue pair is small
(around 80 KB). Thus, LeapIO can easily support hundreds
of virtual NVMe drives for hundreds of VMs in a single ma-
chine without any memory space issue for the queues.
With this view (and for clarity), we repeat again the con-

trol flow for local SSD write operations, using Figure 4. First,
a user VM submits an NVMe command such as write() to
the submission queue (red SQ in VM space, a©). Our in-SoC
runtime continuously polls this SQ in its address space (red

SQ in SoC’s DRAM, a©) and does so by only burning an ARM
core. The runtime converts the previous NVMe command,
submits a new one to the submission queue in the runtime’s
address space (orange SQ in SoC’s DRAM, b©), and rings the
SSD’s “doorbell” [1]. The SSD controller reads the NVMe
write command that has been DMA-ed to the device address
space (orange SQ in the SSD, b©). Note that, all of these by-
pass both the host and the SoC OSes.

3.4 The Data Path (Address Translation Support)

Now we describe the most challenging goal: efficient data
path. The problem is that in existing SmartNIC or SmartSSD
SoC designs, ARM cores are hidden behind either the NIC
controller or storage interface, thus ARM-x86 communica-
tion must be routed through NIC/storage control block and
not efficient. Furthermore, many software/hardware compo-
nents are involved in the data path, hence we must mini-
mize data copying, which we achieve by building an address
mapping/translation support using the aforementioned HW
properties (3.1). Figure 5 walks through this most compli-
cated LeapIO functionality (write path only) in the context
of a VM accessing a remote SSD over RDMA. Before jump-
ing into the details, we provide high-level descriptions of
the figure and the legend.
Components: The figure shows different hardware com-

ponents and software layers in data and command transfers
such as user application, guest VM, host DRAM (“hRAM”),
SoC-level device DRAM buffer (“sRAM1”), client/server run-
time, rNICs, and the back-end SSD.
Command flow: Through these layers, NVMe com-

mands (represented as blue ◮) flow through the NVMe
queue-pair abstraction as described before. The end-to-end
command flow is shown in non-bold blue line. An exam-
ple of an NVMe IO command is write(blkAddr, memAddr)

where blkAddr is a block address within the virtual drive
exposed to the user and memAddr is the address of the data
content in the guest VM.
Data location and path: We attempt to minimize data

copying (reduced ■ count) and allow various software and
hardware layers access the data via memory mapping (2).
The data is transferred (bold red arrow) between the client
and the server, in this context via RDMA-capable NICs.
Address spaces:While there is only one copy of the orig-

inal data (■), different hardware components and software
layers need to access the data in their own address spaces,
hence the need for an address translation support. Specifi-
cally, there are four address spaces involved (see the figure
legend): (1) guestAddr gA representing the guest VM ad-
dress, (2) hostAddr hA denoting the host DRAMphysical ad-
dress, (3) logicalAddr lA implying the logical address (SoC
user space) used by the LeapIO runtime and services, (4)
socAddr sA representing the SoC’s DRAM physical address.

1sRAM denotes on-SoC DRAM, not static RAM.

VM

Runtime

gA

hA

hRAM

rNIC

NVMe command

ex: write(diskAddr, memAddr)

Need address
map / translation

Data flow

Runtime

rNIC

sRAM

h = host

s = SoC

SSD

Actual data location

Memory mapped

g = guest

l = logical

l A

sA

A = Addr

x86

Command

flow

hA
SoC

SoC

a

b

e

fsA
sRAM

l A hA
gA

hA

l A

c

d

Figure 5. Datapath and address translation. The figure shows

how we achieve an efficient data path (minimized copy) with our

address translation support, as elaborated in §3.4. The figure only

shows write path via RDMA (read path is similar).

In our SoC deployment, the SoC and rNIC are co-located
(HW4 in §3.1), hence logicalAddr mode is the most conve-
nient one for using RDMA between the client/server SoCs.

3.4.1 Client-Side Translation. For the client side, we
will refer to Figure 5 a©– d©.

In step a©, on-x86 guest VM allocates a data block, gets
guestAddr gA and puts a writeNVMe command◮with the
memAddr pointing to the guestAddr gA , i.e., write(blkAddr,
gA). The data is physically located in the host DRAM (■ at
hostAddr hA).
In b©, the LeapIO user-space runtime sees the newly sub-

mitted command ◮ and prepares a data block via user-
space malloc(), hence later it can touch the data 2 via
logicalAddr lA in the runtime’s address space. Because the
runtime runs in the SoC, this lA is physically mapped to
the SoC’s DRAM (■ at socAddr sA). Remember that at this
point the data at socAddr sA is still empty.
In step c©, we need tomake a host-to-SoC PCIe data trans-

fer (see notes below on efficiency) and here the first ad-

dress translation is needed (the first double-edged arrow).
That is, to copy the data from the host to SoC’s DRAM, we
need to translate guestAddr gA to hostAddr hA because
the runtime only sees “gA ” in the NVMe command. This
guestAddr-hostAddrtranslation is only available in the host/
hypervisor-managed page tables of the VM that submitted
the request. Thus, our trusted runtime must be given access
to the host IOMMU (propertyHW1 in §3.1).
Next, after obtaining the hostAddr hA , our runtime must

read the data and copy it to socAddr sA (the first bold red
arrow). Thus, the runtimemust also have access to the SoC’s
DMA engine that will DMA the data from the host to SoC’s
DRAM (hence propertyHW2 in §3.1).

In d©, at this point, the data is ready to be trans-
ferred to the server via RDMA. The client runtime
creates a new NVMe command ◮ and supplies the
client side’s logicalAddr lA as the new memAddr, i.e.,
write(blkAddr,lA). The runtime must also register its
logicalAddr via the ibverbs calls so that the SoC OS (not
shown) can tell the rNIC to fetch the data from socAddr sA

(the SoC OS has the lA -sA mapping). This is a standard
protocol to RDMA data.
We make several notes before proceeding. First, the host-

to-SoC data transfer should not be considered as an over-
head, but rather a necessary copy as the data must traverse
the PCIe boundary at least once. This transfer is not done in
software, it is performed by enqueueing a single operation
to the PCIe controller that does a hardware DMA operation
between the two memory regions. Second, LeapIO must be
fully trusted to be given host-side page table access, which
is acceptable as LeapIO is managed by the cloud provider.
A malicious VM’s attack surface is restricted to the NVMe
queue pairs. Whenever LeapIO detects illeagal NVMe com-
mands, it fails the IOs directly. Overall, LeapIO doesn’t ex-
pose extra attack surface compared to existing on-x86 hy-
pervisor IO interface.

3.4.2 Server-Side Translation. For the server side, we
refer to Figure 5 e©– g©. LeapIO server keepsmonitoring data
coming from the network and migrates data to SSD effi-
ciently with direct NVMe access and DMA data transfer be-
tween ARM and SSD.
In e©, LeapIO server runtime sees the new command

◮ and prepares a data buffer 2 at its logicalAddr lA (a
similar process as in step b©). The runtime then makes
an RDMA command to fetch the data from the client run-
time’s logicalAddr lA provided by the incoming NVMe
command. The server rNIC then puts the data directly in
the SoC’s DRAM (■ at socAddr sA). Now LeapIO services
can read the data via the logicalAddr lA and run any stor-
age functions f () desired. When it is time to persist the data,
the runtime submits a new NVMe command ◮ to the SSD.
In f©, being outside the SoC, the backend SSD can

only DMA data using hostAddr(server side) , hence does
not recognize socAddr sA . Thus, the server runtime must
submit a new NVMe command that carries “hostAddr
hA ” as the memAddr of the next write command, i.e.
write(blkAddr,hA). This is the need for another address

translation lA→sA→hA (the second double-edged ar-
row).
For sA→hA , we need to map the SoC’s DRAM space to

the aggregate host address space, which can be done with
p2p-mem technology (property HW3 in §3.1). With this,
the aggregate host address space is the sum of the host
and SoC DRAM. As a simplified example, the “hostAddr
hA ” that represents the socAddr sA can be translated from
hA=hostDramSize+sA (details can vary).

#lines Core SoCVM Emu

Runtime 8865 +850 +680
QEMU 1388 +385
Host OS 2340 +560 +360

Table 3. LeapIO complexity (LOC). (As described in §4)

For lA→sA , the runtime can obtain the logicalAddr to
socAddr translation from the standard /proc page map in-
terface in the SoC OS. We use huge page tables and pin the
runtime’s buffer area so the translation can be set up in the
beginning and not slow down the data path.

3.5 SoCVM

For fungibility, we design LeapIO to portably run on SoC
or x86, such that LeapIO runtime and services are one code
base that does not fragment the fleet. To support LeapIO to
run on x86, we design “SoCVM ” (a SoC-like VM) such that
our overall design remains the same. Specifically, in Figure
4, the “SoC’s DRAM” simply becomes the SoCVM ’s guest
address space. In Figure 5, the socAddr essentially becomes
the SoCVM ’s guestAddr.
To enable SoCVM ’s capability to ac-

hRAM

1G SoCVM

1G

cess the host DRAM, our host hypervi-
sor trusts the SoCVM and performs the
memory mapping shown on the right
figure. Imagine for simplicity that the
SoCVM boots asking for 1GB. The hy-

pervisor allocates a 1G space in the host DRAM, but before
finishing, our modified hypervisor extends the SoCVM ’s ad-
dress space by virtually adding the entire DRAM size. Thus,
any hostAddr hA can be accessed via SoCVM ’s address
1GB+hA (details can vary). To perform the user guestAddr
gA to hA translation, we write a host kernel driver that sup-
plies this to the SoCVM via an NVMe-like interface to avoid
context switches. Finally, to share the guest VM’s NVMe
queue pairs with SoCVM , we map them into SoCVM as a
Base Address Register (BAR) of a virtual PCIe device.
SoCVM also supports legacy storage devices with no

NVMe interface. Older generation servers and cheaper
server SKUs that rely on SATA based SSDs or HDDs can also
be leveraged in LeapIO via the SoCVM implementation (via
libaio), furthering our fungibility goal. Moreover, SoCVM

can coexist with the actual SoC such that LeapIO can sched-
ule services on spare x86 cores when the SoC is full.

4 Implementation

Table 3 breaks down LeapIO 14,388 LOC implementation.
The rows represent the software layers we add/modify,
including LeapIO runtime, QEMU (v2.9.0), and the host
OS/hypervisor (Linux 4.15). In the columns, “Core” repre-
sents the required code to run LeapIO on SoC, “SoCVM ”
represents the support to portably run on x86, and “Emu”
means the small emulated part of an ideal SoC (more below).

We develop LeapIO on a custom-designed development
board based on the Broadcom StingRay V1 SoC that co-
locates an 100Gb Ethernet NIC with 8 Cortex-A72 ARM
cores at 3 GHz. Our development board appears to x86 as a
smart RDMAEthernet controller with one physical function
dedicated to the on-board SoC (and another for host/VM
data), hence the ARM cores can communicate with x86 via
RDMA over PCIe (e.g., for setting up the queue pairs).
Of the four HW requirements (§3.1), our current SoC, af-

ter a 2-year joint hardware development processwith Broad-
com, can fulfill HW1, HW3 (SSD direct DMA from/to SoC
DRAM) and HW4 (in-SoC NIC shareable to x86) fully and
HW2 with a small caveat. For HW2 (IOMMU access), we
currently satisfy this via huge page translations (fewer ad-
dress mappings to cache in SoC) facilitated by the hyper-
visor, which bodes well with the use of huge pages in our
cloud configuration. Our software is also conducive to us-
ing hardware based virutal NVMe emulators [10, 14] that
can directly interact with the IOMMU.
For data-oriented services (e.g., caching and transaction)

in LeapIO local virtualization and remote server mode, peer-
to-peer DMA (p2p-mem) [6] is used for direct SSD-SoC data
transfer to efficiently stage data in SoC DRAM (no x86 in-
volvement). Computation intensive tasks such as compres-
sion, encryption can be further offloaded to in-SoC hard-
ware accelerators. Otherwise, we bypass SoC’s DRAM (de-
fault SSD-host DMA mode) if data path services are not
needed.
Despite lack of full HW2 support, we note that the Lea-

pIO software design and implementation are complete and
ready to leverage newer hardware acceleration features
such as hardware NVMe emulation features when they are
available. Therefore the system performance will improve
as hardware evolves while a full software-only (SoCVM)
as well as SoC-only implementation allow us to reduce re-
source/code fragmentation and hardware dependency. To
the best of our knowledge, LeapIO is the first comprehen-
sive storage function virtualization stack that uses accelera-
tion opportunistically. It enables cloud providers to expose
identical storage services to VMs regardless of server con-
figurations.

5 Evaluation

We thoroughly evaluate LeapIO with the following ques-
tions: §5.1: How much overhead does LeapIO runtime im-
pose compared to other IO pass-through/virtualization tech-
nologies? §5.2: Does LeapIO running on our current ARM
SoC deliver a similar performance compared to running on
x86? §5.3: Can developers easily write and compose storage
services/functions in LeapIO?
To mimic a datacenter setup, we use a high-end machine

with an 18-core (36 hyperthreads) Intel i9-7980XE CPU run-
ning at 2.6GHz with 128G DDR4 DRAM. The SSD is a 2TB

.1

.3

.5

.7

1 4 16 64256

M
O

P
S

#Threads

(a) RR - Thru

PT

1 4 16 64256

#Threads

(b) RW - Thru

Leap

.2

.4

.6

.8

1

.1 .2 .3

#T=1

#T=16

#T=256

Latency (ms)

(c) RR - Lat CDF

PT

.1 .2 .3

#T=1

#T=16

#T=256

Latency (ms)

(d) RW - Lat CDF

Leap

Figure 6. LeapIO vs. Pass-through (PT) with FIO. The figure

compares LeapIO and PT performance as described in §5.1(1). From

left to right, the figures show read-only (RR) and read-write (RW)

throughputs followed with latency CDFs.

data-center Intel P4600 SSD. The user/guest VM is given 8
cores and 8 GB of memory and LeapIO runtime uses 1 core
with two loops, one each for polling incoming submission
queues, and SSD completion queues.
As we mentioned earlier, modern storage stack is deep

and complex. To guide readers in understanding the IO stack
setup, we will use the following format: A/B/C/... where
A/B implies A using/running on top of B. For clarity, we
compare one layer at a time, e.g., A/B1-or-B2/... when com-
paring two approaches at layer B. Finally, to easily find our
main observations, we label them with obs .

5.1 Software Overhead

This section dissects the software overhead of LeapIO run-
time. To not mix performance effects from our SoC hard-
ware, we first run LeapIO inside SoCVM (§3.5) on x86.

(1) LeapIO vs. PT on Local SSD with FIO/SPDK. We
first compare LeapIO with “pass-through” technology (PT)
which arguably provides the most bare-metal performance
a guest VM can reap. With pass-through, guest VM (“gVM”)
owns the entire local SSD and directly polls the NVMe
queue pairs without host OS interference (but PT does not
virtualize the SSD like we do). We name this lower stack
“gVM/PT/SSD” and compare it with our “gVM/LeapIO/
SSD” stack. Now, we vary what we run on the guest VM.
First, we run the FIO benchmark [12] on top of SPDK in

the guest VM to not wake up the guest OS (FIO/SPDK).
This setup gives the highest bare-metal performance as nei-
ther the guest/host OS is in the data path.We run FIO in two
modes (read-only or 50%/50% read-write mix) of 4KB blocks
with 1 to 256 threads. To sum up, we are comparing these
two stacks: FIO/SPDK/gVM/PT-or-LeapIO/SSD.

obs Figure 6 shows that we are not far from the bare-
metal performance. More specifically, Figure 6a-b shows
that LeapIO runtime throughput drops only by 2% and 5%
for the read-only and read-write throughputs respectively.
The write overhead is higher because our datacenter SSD
employs a large battery-backed RAM that can buffer write
operations in <5µs. In Figure 6c-d, below p99 (the 99th per-
centile), LeapIO runtime shows only a small overhead (3%
on average). At p99.9, our overhead ranges between 6 to 12%.

 0

 40

 80

 120

1 16 32

K
O

P
S

#Threads

(a) RR - Thru

PT

 0

 10

 20

 30

 40

1 8 16

K
O

P
S

#Threads

(b) RW - Thru

Leap

.2

.4

.6

.8

1

.1 .2 .3 .4 .5

#T=1

#T=32

Latency (ms)

(c) RR - Lat CDF

PT

.1 .2 .3 .4 .5

#T=1

#T=16

Latency (ms)

(d) RW - Lat CDF

Leap

Figure 7. Leap vs. PT (YCSB/RocksDB). The figure compares

LeapIO and pass-through (PT) as described in §5.1(2).

1

5
10
20
50

100

1 2 4 8 16

K
O

P
S

#Threads

(a) RR

FV VH

1 2 4 8 16

#Threads

(b) RW

PT Leap

Figure 8. Leap vs. other virt. technologies. The figure com-

pares LeapIO with full virtualization (FV) and virtual host (VH) as

described in §5.1(3).

LeapIO runtime is fast because of the direct NVMe queue-
pair mapping across different layers. For each 64-byte sub-
mission entry, LeapIO runtime only needs to translate 2-
3 fields with simple calculations and memory fetches (for
translations).
In another experiment (not shown), we convert the 256

threads from 1 guest VM in Figure 6a into 8 guest VMs each
with 32 threads and obtain the same results. This demon-
strates that LeapIO scales well with the number of guest
NVMe queue pairs managed.
(2) LeapIO vs. PT on Local SSD with YCSB/RocksDB.

Next, we run a real application: RocksDB (v6.0) [18] on ext4
serving YCSB workloads [36] (YCSB/RocksDB/gOS). YCSB
is set to make uniform request distributions (to measure the
worst-case performance) across 100 million key-value en-
tries. We perform read-only or 50-50 read/write workloads.
Figure 7 confirms the low software overhead of LeapIO by
comparing these two stacks: YCSB/RocksDB/gOS/gVM/PT-
or-LeapIO/SSD. Compared to Figure 6c-d, LeapIO latencies
are worse than PT mainly due to the software virtual inter-
rupt overhead (VM-exits).
(3) LeapIO vs. Other Technologies on Local SSD.

Nowwe repeat the above experiments but cover other virtu-
alization technologies. To make a faster RocksDB setup that
bypasses the guest OS, we run RocksDB on SPDK and run
db_bench benchmark (db_bench/RocksDB/SPDK/gVM).
We switch to db_bench as YCSB workloads require the full
POSIX API that is currently not supported by SPDK.

 0

 40

 80

 120

1 8 16 32 64

K
O

P
S

#Threads

(a) RR - Thru

kNoF
uNoF
Leap

.2

.4

.6

.8

1

.2 .4 .6 .8 1

#T=1
#T=32

Latency (ms)

(b) RR - Lat CDF

Leap
uNoF
kNoF

Figure 9. LeapIO vs. kernel/user NVMeoF. We compare Lea-

pIO remote NVMe feature with kernel and user NVMeoF (kNoF and

uNoF). uNoF is unstable; with 32 threads, at p99.9 uNoF reaches

14ms while LeapIO can deliver 1.4ms, and at p99.99 uNoF reaches

almost 2000ms while LeapIO is still around 7ms.

We now vary the technologies under the guest VM
(gVM/FV-or-VH-or-PT-or-LeapIO/SSD). Full virtualiza-
tion (“FV”) [13] provides SSD virtualization but is the slow-
est among all as it must wake up the host OS (via interrupts)
to reroute all the virtualized IOs. Virtual host (“VH”) [9]
is a popular approach [3] that combines virtualization and
polling but requires guest OS changes (e.g., using the virtio
interface and SPDK-like polling to get rid of interrupts.)

obs Figure 8 shows the results. While LeapIO loses by 3%
to PT, when compared to popular IO virtualization technolo-
gies such as virtual-host, LeapIO throughput degradation is
only 1.6%. At p99.99 latency LeapIO is only slower by 26µs
(1%). This is an acceptable overhead considering that now
we can easily move IO services to ARM co-processors.

(4) LeapIO vs. NVMeoF for Remote SSD access. We
compare LeapIO server-side runtime with a popular re-
mote IO virtualization technology, NVMeoF, which is a
standard way for disaggregating NVMe storage access over
RDMA/TCP [2]. Once connecting the NVMeoF client, the
server continuously minotors and routes incoming NVMe
commands to the backend SSDs. There are two server-
side NVMeoF options we evaluate: kernel-based one that
works in an interrupt-driven mode (“kNoF”) and user-space
one that utilizes SPDK for polling (“uNoF”). We use the
YCSB/RocksDB client setup as before, but now with remote
SSD. Thus, we compare YCSB/RocksDB/gOS/gVM/client/
–RDMA–/kNoF-or-uNoF-or-LeapIOServer/SSD, where
“client” implies the client-side runtime of either kNoF, uNoF,
or LeapIO (TCP setup omitted due to space limit).

obs Based on Figure 9, we make two observations here.
First kernel-based NVMeoF (kNoF) is most stable and per-
formant, but is not easily extensible as services must be built
in the kernel. However, our more extensible LeapIO only
imposes a small overhead (6% throughout loss and 8% la-
tency overhead). Second, interestingly we found that user-
space NVMeoF (uNoF) is unstable. In majority of the cases,
it is worse than LeapIO but in one case (64 threads) uNoF
is better (after repeated experiments). uNoF combined with
RDMA is a relatively new and some performance and reli-
ability issues have been recently reported [21–23]. We also

.1

.3

.5

1 4 16 64

M
O

P
S

#Threads

(a) FIO - Thru

VM

30

60

90

120

150

8 16 32

K
O

P
S

#Threads

(b) YCSB - Thru

SoC

.2

.4

.6

p50 p90 p99 p99.9

L
a
te

n
c
y
 (

m
s
)

Lat Percentile

(c) FIO - Tail

SoC-t16
SoC-t32

1

2

3

p50 p90 p99 p99.9

Lat Percentile

(d) YCSB - Tail

VM-t16
VM-t32

Figure 10. SoC vs. SoCVM Benchmarks. The figure compares

the performance of LeapIO SSDs (local and remote) running on a SoC

vs. in a SoCVM as described in §5.2.

tried running uNoF over TCP to no avail (not shown for
space). With this, we can claim that LeapIO is the first user-
space NVMeoF platform that delivers stable performance
for the VMs.

5.2 SoC Performance

Wenow dissect separately the performanceof LeapIO client-
and server-side runtimes on an ARM SoC vs. on x86.
(1) Local SSD (realSoC vs. SoCVM). We reuse the FIO-

on-local-SSD stack in §5.1.1 for this experiment (specifically
FIO/SPDK/gVM/SoCVM -or-realSoC/SSD). Figures 10a&c
show realSoC runtime is up to 30% slower than SoCVM .
This is because in our current implementation, we access
the guest VMs’ and SoC-side queue pairs via SoC-to-host
one-sided RDMA (§4), which adds an expensive 5µs per op-
eration. We are working with Broadcom to revamp the in-
terface between SoC and the host memory to get closer to
native PCIe latencies. Another reason is that the ARM cores
run at a 25% lower frequency compared to the x86 cores.
(2) Remote SSD (realSoC vs. SoCVM).Next, to measure

remote SSD performance, we repeat the setup in §5.1.4
(YCSB/RocksDB/gOS/gVM/SoCVM /–RDMA–/SoCVM -or-

realSoC/SSD). Figures 10b&d show that realSoC on remote
side (and SoCVM on client side) has a minimal overhead
compared to the previous setting (only 5% throughput
reduction and 10% latency overhead at p99) because the
remote runtime does not need to communicate with the
remote host, hence does not suffer from any overheads.
However, we note that the overheads would be similar to
the previous experiment when both sides use realSoC.

obs Overall, although current realSoC-LocalSSD is up to
30% slower (will be improved in our future SoC), our cost
benefit analysis shows that using even 4× more cores in re-
alSoC compared to the number of cores in SoCVM to achieve
performance parity still pays off. From the second experi-
ment, we show that x86 is an overkill for polling and ARM
co-processors can easily take over the burden when serving
SSDs over the network.

.2

.4

.6

.8

1

 0 1 2 3 4 5

Latency (ms)

(a) Local SSD

Base
Base [SoC]

+BG+Prio
+BG

 0 1 2 3 4 5

Latency (ms)

(b) Local SSD + Snap

Base
+Snap

+Snap+Prio+BG
+Snap+BG

 0 1 2 3 4 5

Latency (ms)

(c) Rack SSD

Base
+BG+Prio

+BG

.2

.4

.6

.8

1

 0 1 2 3 4 5

Latency (ms)

(d) Rack SSD - RAID0

Base
+BG+Prio

+BG

 0 5 10 15 20

Latency (ms)

(e) Rack SSD - RAID1

Base
+BG+Prio

+BG

0 1 2 3

Latency (ms)

(f) Virtual OC

Base
+Iso
+BG

Figure 11. Service features. The figures are described in §5.3(a)-

(f). The experiments are done on SoCVM for faster evaluation. In (a),

we run one experiment on SoC “[SoC]” to show a similar pattern.

5.3 Composability

LeapIO runtime enables composing services in easy ways.
Like filtering operations in networking, LeapIO services get
a command, process it, and then either send a completion
back to the upstream queue or forward sub-commands to
many downstream queues (e.g., striping). Composability is
achieved by chaining and striping filters. For instance, one
simple example we demonstrate later is combining priority
and snapshot services.
We build various storage services that compose lo-

cal/remote devices as well as remote services in just 70 to
4400 LOC each, all in user space on LeapIO runtime. In all
the experiments below, we use a “search-engine” workload
trace containing read-only, user-facing index lookups. We
take 1 million IOs, containing various IO sizes from 4K to
7M bytes with average and median size of 36K and 32K
bytes respectively. We also co-locate the search workload
with a background (“BG”) workload that performs intensive
read/write IOs such as rebuilding the index. The purpose
of using a real search-engine trace is as a case study of mi-
grating latency-sensitive services from dedicated servers to
a shared cloud, thereby making latency-sensitive services
more elastic with resources in proportion to the load.
(a) Prioritization service. A crucial enabler for high

cloud utilization is the ability to prioritize time-sensitive,
user-facing queries over non-interactive background work-
loads such as index rebuilding. For this, we build a new
service that prioritizes interactive workloads while keeping
the batch processing workload make meaningful forward
progress when hosts are under-utilized.
The “Base” line in Figure 11a shows the latency CDF of

the search-engine VM without contention. However, when

co-located with batch workloads (BG), the search VM suf-
fers long latencies (“+BG” line). With our prioritization ser-
vice, the search VM observes the same performance as if
there were no contention (“+BG+Prio” line). At the same
time, the batch workload obtains 10% of the average re-
sources to make meaningful progress (not shown).
(b) Snapshot/version service. Another important re-

quirement of search engines is to keep the index fresh. The
index-refresher job must help foreground jobs serve queries
with the freshest index. It is undesirable to refresh the in-
dex in an offline manner where the old index is entirely re-
jected and a new one is loaded (causing invalidated caches
and long tail latencies). A more favorable way is to update
the index gradually.
For this, we build two new services. The first service im-

plements a snapshot feature (the index-refresher job). Here,
all writes are first committed to a log using our NVMemulti-
block atomic write command while a background thread
gradually checkpoints them (while the foreground thread
serves consistent versions of the index). The second service
is a search VM that looks up the log and obtains blocks of
the version they need if they are present in the log and reads
the remaining data from the SSD.
Figure 11b shows that this snapshot-consistent read fea-

ture adds a slightly longer latency to the base non-versioned
reads (“+Snap” vs “Base” lines). When combined with the
background writer, the snapshot-consistent reads exhibit
long latencies (“+Snap+BG” line). Here we can easily com-
pose our snapshot-consistent and prioritization features in
LeapIO (the “+Snap+Prio+BG” line).
(c) Remote rack-local SSD. Decoupling compute and

storage is a long standing feature of many storage services.
We want to decouple the search service also from its stor-
age. Figure 11c shows the results the same workload used in
Figure 11b (prioritization) but now the storage is a remote
SSD (in the local rack shared by multiple search VMs). The
experiment shows that the prioritization mechanism works
end-to-end even with the network now in the data path.
(d) Agile rack-local RAID. Our servers that power

search engines require disproportionately larger and more
powerful SSDs compared to traditional VM workloads. Cur-
rently, this means we must overprovision SSD space and
bandwidth to keep the fleet uniform and fungible. With Lea-
pIO, we propose not to overprovision the dedicated SSDs but
rather build larger composable virtual rack-local SSDs.
More specifically, in every rack, each server publishes the

free SSD IOPS, space and available network bandwidth that
it can spare to a central known billboard every few minutes.
Any server that needs to create a virtual drive beyond the ca-
pacity of its free space consults the billboard. It then sequen-
tially contacts each server directly to find out if it still has
the necessary free capacity until one of them responds affir-
matively. In such a case, they execute a peer-to-peer trans-
action with a producer/consumer relationship and establish

a direct data path between the two. The consumer uses the
additional space to augment its local SSDs to support the
search VMs in the rack which are interested in this parti-
tion of the index.
Figure 11d shows the same experiments in Figure 11c

but now the backend drive is a RAID-0 of two virtual SSDs
(more is possible) in two machines, delivering a higher per-
formance and capacity for the workload.
(e) Rack-local RAID 1. To protect against storage fail-

ures, one can easily extend RAID 0 to RAID 1 (or other RAID
protection levels). Figure 11e shows the results with RAID-1
of two remote SSDs as the backend. Note that we lose the
performance of RAID-0 but now get reliability.
(f) Virtualized Open Channel service for isolation.

Another related approach to prioritization is isolation – dif-
ferent VMs use isolated virtual drives within the same SSD.
For this, we compose a unique stack enabled by LeapIO:
gVM/LeapIOClient/OC (where “OC” denotes OpenChan-
nel SSD [32, 55]). OC can be configured to isolate flash chan-
nels for different tenants [41]. Unfortunately, OC cannot be
virtualized across multiple VMs, because LightNVM must
run in the host OS and directly talks to OC.
With LeapIO, we can virtualize OC. Guest VM/OSes can

run LightNVM not knowing that underneath it LeapIO
remaps the channels. As an example, a guest VM can ask for
4 channels and our new OC service can map the requested
channels to the local (or even remote) OC drives. Hence, our
new OC service is capable of exposing virtual channels and
allow guest VMs to reap OC performance isolation benefits.
In Figure 11f, when a VM (running basic FIO) competes with
another write-heavy VM on a shared SSD, the FIO latencies
are heavily affected (“Base” vs. “+BG” lines). However, after
we dedicate different channels for these two VMs, the search
engine performance is now isolated (“+Iso” line).

6 Conclusion

LeapIO is our next-generation cloud storage stack that lever-
ages ARM SoC to alleviate taxing x86 CPUs. Our experience
and experiments with LeapIO show that the engineering
and performance overhead of moving from x86 to ARM is
minimal. In the shorter term, wewill continue tomove exist-
ing host storage services to LeapIO, while our longer term
goal is to develop new capabilities that allow even the guest
software stack to be offloaded to ARM.

7 Acknowledgments

We thank the anonymous reviewers for their tremendous
feedback and comments. The university authors were sup-
ported by funding from NSF (grant Nos. CNS-1350499, CNS-
1526304, CNS-1405959, CNS-1563956).

Any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors and do not neces-
sarily reflect the views of the NSF or other institutions.

References
[1] Introduction to NVMe. h�ps://www.osr.com/nt-insider/2014-issue4/

introduction-nvme-technology, 2014.

[2] NVM Express over Fabrics Revision 1.0. h�ps://nvmexpress.org/wp-

content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf,

2016.

[3] Alibaba: Using SPDK in Production. h�ps://ci.spdk.io/download/

events/2018-summit/day1_08_ShengMingAlibaba.pdf, 2018.

[4] BlueField SmartNIC. h�p://www.mellanox.com/page/products_dyn?

product_family=275&mtag=bluefield_smart_nic, 2018.

[5] NVMe Is The New Language Of Storage. h�ps://www.forbes.

com/sites/tomcoughlin/2018/05/03/nvme-is-the-new-language-of-

storage, 2018.

[6] p2pmem: Enabling PCIe Peer-2-Peer in Linux. h�ps://www.snia.org/

sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_

PM_NVDIMM/Bates_Stephen_p2pmem_Enabling_PCIe_Peer-2-

Peer_in_Linux.pdf, 2018.

[7] Smart SSD: Faster Time To Insight, 2018. h�ps://samsungatfirst.com/

smartssd/.

[8] Stingray 100GbE Adapter for Storage Disaggregation over RDMA

and TCP. h�ps://www.broadcom.com/products/storage/ethernet-

storage-adapters-ics/ps1100r, 2018.

[9] Accelerating NVMe I/Os in Virtual Machines via SPDK vhost. h�ps://

www.lfasiallc.com/wp-content/uploads/2017/11/Accelerating-

NVMe-I_Os-in-Virtual-Machine-via-SPDK-vhost_Ziye-Yang-_-

Changpeng-Liu.pdf, 2019.

[10] Broadcom Announces Availability of Industry’s First Univer-

sal NVMe Storage Adapter for Bare Metal and Virtualized

Servers. h�ps://www.globenewswire.com/news-release/2019/

08/06/1897739/0/en/Broadcom-Announces-Availability-of-Industry-

s-First-Universal-NVMe-Storage-Adapter-for-Bare-Metal-and-

Virtualized-Servers.html, 2019.

[11] Cloud Storage Market worth 88.91 Billion USD by 2022. h�ps://www.

marketsandmarkets.com/PressReleases/cloud-storage.asp, 2019.

[12] Flexible I/O Tester. h�ps://github.com/axboe/fio.git, 2019.

[13] Full Virtualization. h�ps://en.wikipedia.org/wiki/Full_virtualization,

2019.

[14] In-Hardware Storage Virtualization - NVMe SNAP Revolution-

izes Data Center Storage. h�p://www.mellanox.com/related-docs/

solutions/SB_Mellanox_NVMe_SNAP.pdf, 2019.

[15] iSCSI: Internet Small Computer Systems Interface. h�ps://en.

wikipedia.org/wiki/ISCSI, 2019.

[16] NGD Newport Computational Storage Platform. h�ps://www.

ngdsystems.com, 2019.

[17] NVM Express Revision 1.4. h�ps://nvmexpress.org/wp-content/

uploads/NVM_Express_Revision_1.4.pdf, 2019.

[18] RocksDB - A Persistent Key-Value Store for Fast Storage Environ-

ments. h�ps://rocksdb.org, 2019.

[19] Samsung Key Value SSD Enables High Performance Scaling. h�ps://

www.samsung.com/semiconductor/global.semi.static/Samsung_

Key_Value_SSD_enables_High_Performance_Scaling-0.pdf, 2019.

[20] Single-Root Input/Output Virtualization. h�p://www.pcisig.com/

specifications/iov/single_root, 2019.

[21] SPDK Fails to Come Up After Long FIO Run. h�ps://github.com/spdk/

spdk/issues/691, 2019.

[22] SPDK NVMf Target Crashed While Running File System. h�ps://

github.com/spdk/spdk/issues/763, 2019.

[23] SPDK Performance Very Slow. h�ps://github.com/spdk/spdk/issues/

731, 2019.

[24] Ahmed Abulila, Vikram SharmaMailthody, Zaid Qureshi, Jian Huang,

Nam Sung Kim, Jinjun Xiong, and Wen mei Hwu. FlatFlash: Exploit-

ing the Byte-Accessibility of SSDs within a Unified Memory-Storage

Hierarchy. In Proceedings of the 24th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS), 2019.

[25] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-

ishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A Fast Array

of Wimpy Nodes. In Proceedings of the 22nd ACM Symposium on Op-

erating Systems Principles (SOSP), 2009.

[26] Nils Asmussen, Marcus Volp, Benedikt Nothen, Hermann Hartig, and

Gerhard Fettweis. M3: A Hardware/Operating-System Co-Design to

Tame Heterogeneous Manycores. In Proceedings of the 21st Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2016.

[27] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,

Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2B-SSD: The Case

for Dual, Byte- and Block-Addressable Solid-State Drives. In Proceed-

ings of the 45th Annual International Symposium on Computer Archi-

tecture (ISCA), 2018.

[28] Mahesh Balakrishnan, DahliaMalkhi, Vijayan Prabhakaran, TedWob-

ber, Michael Wei, and John D. Davis. CORFU: A Shared Log Design

for Flash Clusters. In Proceedings of the 9th Symposium on Networked

Systems Design and Implementation (NSDI), 2012.

[29] Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, and Goetz

Brasche. It’s Time to Think About an Operating System for Near Data

Processing Architectures. In Proceedings of the 16th Workshop on Hot

Topics in Operating Systems (HotOS XVI), 2017.

[30] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony

Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. Break-

ing the Boundaries in Heterogeneous-ISA Datacenters. In Proceedings

of the 22nd International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2017.

[31] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-

nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and

Binoy Ravindran. Popcorn: Bridging the Programmability Gap in

Heterogeneous-ISA Platforms. In Proceedings of the 2015 EuroSys Con-

ference (EuroSys), 2015.

[32] Matias Bjørling, Javier González, and Philippe Bonnet. LightNVM:

The Linux Open-Channel SSD Subsystem. In Proceedings of the 15th

USENIX Symposium on File and Storage Technologies (FAST), 2017.

[33] Adrian M. Caulfield and Steven Swanson. QuickSAN: A Storage Area

Network for Fast, Distributed, Solid State Disks. In Proceedings of

the 40th Annual International Symposium on Computer Architecture

(ISCA), 2013.

[34] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin

Yi, and Gregory R. Ganger. Active Disk Meets Flash: A Case for In-

telligent SSDs. In Proceedings of the 27th International Conference on

Supercomputing (ICS), 2013.

[35] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and Sungjin Lee.

LightStore: Software-defined Network-attached Key-value Drives. In

Proceedings of the 24th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS),

2019.

[36] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.

In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC),

2010.

[37] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,

Kwanghyun Park, and David J. DeWitt. Query Processing on Smart

SSDs: Opportunities and Challenges. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data (SIGMOD),

2013.

[38] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silber-

stein. NICA: An Infrastructure for Inline Acceleration of Network

Applications. In Proceedings of the 2019 USENIX Annual Technical Con-

ference (ATC), 2019.

[39] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek

Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek

https://www.osr.com/nt-insider/2014-issue4/introduction-nvme-technology
https://www.osr.com/nt-insider/2014-issue4/introduction-nvme-technology
https://nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf
https://ci.spdk.io/download/events/2018-summit/day1_08_ShengMingAlibaba.pdf
https://ci.spdk.io/download/events/2018-summit/day1_08_ShengMingAlibaba.pdf
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
https://www.forbes.com/sites/tomcoughlin/2018/05/03/nvme-is-the-new-language-of-storage
https://www.forbes.com/sites/tomcoughlin/2018/05/03/nvme-is-the-new-language-of-storage
https://www.forbes.com/sites/tomcoughlin/2018/05/03/nvme-is-the-new-language-of-storage
https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/Bates_Stephen_p2pmem_Enabling_PCIe_Peer-2-Peer_in_Linux.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/Bates_Stephen_p2pmem_Enabling_PCIe_Peer-2-Peer_in_Linux.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/Bates_Stephen_p2pmem_Enabling_PCIe_Peer-2-Peer_in_Linux.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/Bates_Stephen_p2pmem_Enabling_PCIe_Peer-2-Peer_in_Linux.pdf
https://samsungatfirst.com/smartssd/
https://samsungatfirst.com/smartssd/
https://www.broadcom.com/products/storage/ethernet-storage-adapters-ics/ps1100r
https://www.broadcom.com/products/storage/ethernet-storage-adapters-ics/ps1100r
https://www.lfasiallc.com/wp-content/uploads/2017/11/Accelerating-NVMe-I_Os-in-Virtual-Machine-via-SPDK-vhost_Ziye-Yang-_-Changpeng-Liu.pdf
https://www.lfasiallc.com/wp-content/uploads/2017/11/Accelerating-NVMe-I_Os-in-Virtual-Machine-via-SPDK-vhost_Ziye-Yang-_-Changpeng-Liu.pdf
https://www.lfasiallc.com/wp-content/uploads/2017/11/Accelerating-NVMe-I_Os-in-Virtual-Machine-via-SPDK-vhost_Ziye-Yang-_-Changpeng-Liu.pdf
https://www.lfasiallc.com/wp-content/uploads/2017/11/Accelerating-NVMe-I_Os-in-Virtual-Machine-via-SPDK-vhost_Ziye-Yang-_-Changpeng-Liu.pdf
https://www.globenewswire.com/news-release/2019/08/06/1897739/0/en/Broadcom-Announces-Availability-of-Industry-s-First-Universal-NVMe-Storage-Adapter-for-Bare-Metal-and-Virtualized-Servers.html
https://www.globenewswire.com/news-release/2019/08/06/1897739/0/en/Broadcom-Announces-Availability-of-Industry-s-First-Universal-NVMe-Storage-Adapter-for-Bare-Metal-and-Virtualized-Servers.html
https://www.globenewswire.com/news-release/2019/08/06/1897739/0/en/Broadcom-Announces-Availability-of-Industry-s-First-Universal-NVMe-Storage-Adapter-for-Bare-Metal-and-Virtualized-Servers.html
https://www.globenewswire.com/news-release/2019/08/06/1897739/0/en/Broadcom-Announces-Availability-of-Industry-s-First-Universal-NVMe-Storage-Adapter-for-Bare-Metal-and-Virtualized-Servers.html
https://www.marketsandmarkets.com/PressReleases/cloud-storage.asp
https://www.marketsandmarkets.com/PressReleases/cloud-storage.asp
https://github.com/axboe/fio.git
https://en.wikipedia.org/wiki/Full_virtualization
http://www.mellanox.com/related-docs/solutions/SB_Mellanox_NVMe_SNAP.pdf
http://www.mellanox.com/related-docs/solutions/SB_Mellanox_NVMe_SNAP.pdf
https://en.wikipedia.org/wiki/ISCSI
https://en.wikipedia.org/wiki/ISCSI
https://www.ngdsystems.com
https://www.ngdsystems.com
https://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.4.pdf
https://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.4.pdf
https://rocksdb.org
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.pcisig.com/specifications/iov/single_root
http://www.pcisig.com/specifications/iov/single_root
https://github.com/spdk/spdk/issues/691
https://github.com/spdk/spdk/issues/691
https://github.com/spdk/spdk/issues/763
https://github.com/spdk/spdk/issues/763
https://github.com/spdk/spdk/issues/731
https://github.com/spdk/spdk/issues/731

Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa,

Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,

Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar

Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivaku-

mar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak

Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert

Greenberg. Azure Accelerated Networking: SmartNICs in the Pub-

lic Cloud. In Proceedings of the 15th Symposium on Networked Systems

Design and Implementation (NSDI), 2018.

[40] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,

Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,

Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. Biscuit: A

Framework for Near-Data Processing of Big Data Workloads. In Pro-

ceedings of the 43rd Annual International Symposium on Computer Ar-

chitecture (ISCA), 2016.

[41] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta

Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. FlashBlox:

Achieving Both Performance Isolation and Uniform Lifetime for Vir-

tualized SSDs. In Proceedings of the 15th USENIX Symposium on File

and Storage Technologies (FAST), 2017.

[42] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,

Nate Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing

Key-Value Stores with Fast In-Network Caching. In Proceedings of the

26th ACM Symposium on Operating Systems Principles (SOSP), 2017.

[43] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn,

Myron King, Shuotao Xu, and Arvind. BlueDBM: An Appliance for

Big Data Analytics. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture (ISCA), 2015.

[44] Yangwook Kang, Yang suk Kee, Ethan L. Miller, and Chanik Park. En-

abling Cost-effective Data Processing with Smart SSD. In Proceedings

of the 29th IEEE Symposium on Massive Storage Systems and Technolo-

gies (MSST), 2013.

[45] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Ander-

son, and Arvind Krishnamurthy. High Performance Packet Process-

ing with FlexNIC. In Proceedings of the 21st International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2016.

[46] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A

Case for Intelligent Disks (IDISKs). In Proceedings of the 1998 ACM

SIGMOD International Conference on Management of Data (SIGMOD),

1998.

[47] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam,

Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Shachar Raindel,

Steven Swanson, Vyas Sekar, and Srinivasan Seshan. HyperLoop:

Group-Based NIC-Offloading to Accelerate Replicated Transactions

in Multi-Tenant Storage Systems. In Proceedings of the ACM Special

Interest Group on Data Communication (SIGCOMM), 2018.

[48] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim,

and Sue Moon. NBA (Network Balancing Act): A High-performance

Packet Processing Framework for Heterogeneous Processors. In Pro-

ceedings of the 2015 EuroSys Conference (EuroSys), 2015.

[49] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex: Remote

Flash≈ Local Flash. In Proceedings of the 22nd International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2017.

[50] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing

Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram. Sum-

marizer: Trading Communication with Computing Near Storage. In

50th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-50), 2017.

[51] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel

Gordon, and Dan Tsafrir. Paravirtual Remote I/O. In Proceedings of

the 21st International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), 2016.

[52] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya

Akella, Michael M. Swift, and T.V. Lakshman. UNO: Unifying Host

and Smart NIC Offload for Flexible Packet Processing. In Proceedings

of the 8th ACM Symposium on Cloud Computing (SoCC), 2017.

[53] Sungjin Lee, Ming Liu, Sang Woo Jun, Shuotao Xu, Jihong Kim, and

Arvind. Application-Managed Flash. In Proceedings of the 14th

USENIX Symposium on File and Storage Technologies (FAST), 2016.

[54] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang

Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. KV-Direct:

High-Performance In-Memory Key-Value Store with Programmable

NIC. In Proceedings of the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[55] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-

dararaman, Matias Bjørling, and Haryadi S. Gunawi. The CASE of

FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator. In

Proceedings of the 16th USENIX Symposium on File and Storage Tech-

nologies (FAST), 2018.

[56] Ming Liu, Tianyi Cui, Henrik Schuh, Arvind Krishnamurthy, Simon

Peter, and Karan Gupta. iPipe: A Framework for Building Distributed

Applications on Multicore SoC SmartNICs. In Proceedings of the ACM

Special Interest Group on Data Communication (SIGCOMM), 2019.

[57] Ming Liu, Simon Peter, Arvind Krishnamurthy, and

Phitchaya Mangpo Phothilimthana. E3: Energy-Efficient Mi-

croservices on SmartNIC-Accelerated Servers. In Proceedings of the

2019 USENIX Annual Technical Conference (ATC), 2019.

[58] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and

Young Ik Eom. Lightweight Application-Level Crash Consistency on

Transactional Flash Storage. In Proceedings of the 2016 USENIX Annual

Technical Conference (ATC), 2016.

[59] Changwoo Min, Woonhak Kang, Mohan Kumar, Sanidhya Kashyap,

Steffen Maass, Heeseung Jo, and Taesoo Kim. Solros: A Data-Centric

Operating System Architecture for Heterogeneous Computing. In

Proceedings of the 2018 EuroSys Conference (EuroSys), 2018.

[60] Mihir Nanavati, Jake Wires, and AndrewWarfield. Decibel: Isolation

and Sharing in Disaggregated Rack-Scale Storage. In Proceedings of

the 14th Symposium on Networked Systems Design and Implementation

(NSDI), 2017.

[61] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Haw-

blitzel, and Galen Hunt. Helios: Heterogeneous Multiprocessing with

Satellite Kernels. In Proceedings of the 22nd ACM Symposium on Op-

erating Systems Principles (SOSP), 2009.

[62] Pierre Olivier, A KM Fazla Mehrab, Stefan Lankes, Mohamed Lamine

Karaoui, Robert Lyerly, and Binoy Ravindran. HEXO: Offloading HPC

Compute-Intensive Workloads on Low-Cost, Low-Power Embedded

Systems. In Proceedings of the 28th IEEE International Symposium on

High Performance Distributed Computing (HPDC), 2019.

[63] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and

Yuanzheng Wang. SDF: Software-Defined Flash for Web-Scale Inter-

net Storage System. In Proceedings of the 18th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2014.

[64] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Si-

mon Peter, Rastislav Bodik, and Thomas Anderson. Floem: A Pro-

gramming System for NIC-Accelerated Network Applications. In Pro-

ceedings of the 13th Symposium on Operating Systems Design and Im-

plementation (OSDI), 2018.

[65] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. Trans-

actional Flash. In Proceedings of the 8th Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2008.

[66] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active Storage For

Large-Scale Data Mining and Multimedia. In Proceedings of the 24th

International Conference on Very Large Databases (VLDB), 1998.

[67] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray,

and Emmett Witchel. PTask: Operating System Abstractions To Man-

age GPUs as Compute Devices. In Proceedings of the 23rd ACM Sym-

posium on Operating Systems Principles (SOSP), 2011.

[68] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin,

and Dennis Fetterly. Dandelion: A Compiler and Runtime for Het-

erogeneous Systems. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles (SOSP), 2013.

[69] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing In-

Storage Computing System for Emerging High-Performance Drive.

In Proceedings of the 2019 USENIX Annual Technical Conference (ATC),

2019.

[70] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor

Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow:

A User-Programmable SSD. In Proceedings of the 11th Symposium on

Operating Systems Design and Implementation (OSDI), 2014.

[71] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS:

A Disseminated, Distributed OS for Hardware Resource Disaggrega-

tion. In Proceedings of the 13th Symposium on Operating Systems De-

sign and Implementation (OSDI), 2018.

[72] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu, Yongqiang

Xiong, Derek Chiou, and Thomas Moscibroda. Direct Universal Ac-

cess: Making Data Center Resources Available to FPGA. In Proceed-

ings of the 16th Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2019.

[73] Mark Silberstein. OmniX: an accelerator-centric OS for omni-

programmable systems. In Proceedings of the 16th Workshop on Hot

Topics in Operating Systems (HotOS XVI), 2017.

[74] Mark Silberstein, Bryan Ford, Idit Keidar, and EmmettWitchel. GPUfs:

Integrating a File System with GPUs. In Proceedings of the 18th In-

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2013.

[75] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,

Antony Rowstron, Tom Talpey, Richard Black, and Timothy Zhu.

IOFlow: A Software-Defined Storage Architecture. In Proceedings

of the 24th ACM Symposium on Operating Systems Principles (SOSP),

2013.

[76] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai, Youngjae

Kim, Xiaosong Ma, Peter Desnoyers, and Yan Solihin. Active Flash:

Towards Energy-Efficient, In-Situ Data Analytics on Extreme-Scale

Machines. In Proceedings of the 11th USENIX Symposium on File and

Storage Technologies (FAST), 2013.

[77] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, and

Arvind. BlueCache: A Scalable Distributed Flash-based Key-value

Store. In Proceedings of the 42nd International Conference on Very Large

Data Bases (VLDB), 2016.

[78] Ziye Yang, James RHarris, BenjaminWalker, Daniel Verkamp, Chang-

peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma,

and Luse E Paul. SPDK: A Development Kit to Build High Perfor-

mance Storage Applications. In Proceedings of the 9th IEEE Interna-

tional Conference on Cloud Computing Technology and Science (Cloud-

Com), 2017.

	Abstract
	1 Introduction
	1.1 LeapIO

	2 Extended Motivation
	2.1 Goals
	2.2 Related Work

	3 Design
	3.1 The Hardware View
	3.2 The Software View
	3.3 The Control Setup
	3.4 The Data Path (Address Translation Support)
	3.5 SoCVM

	4 Implementation
	5 Evaluation
	5.1 Software Overhead
	5.2 SoC Performance
	5.3 Composability

	6 Conclusion
	7 Acknowledgments
	References

