
Language Support for
Memory Persistency

Aasheesh Kolli

Pennsylvania State University and VMware

Research

Vaibhav Gogte

University of Michigan

Ali Saidi

Amazon Web Services

Stephan Diestelhorst

ARM Research

William Wang

University of Michigan

Peter M. Chen

ARM Research

Satish Narayanasamy

University of Michigan

Thomas F. Wenisch

University of Michigan

Abstract—Memory persistency models enable maintaining recoverable data structures in

persistentmemories and priorwork has proposed ISA-level persistencymodels. In addition to

thesemodels, we argue for extending language-levelmemorymodels to provide persistence

semantics.We present a taxonomy of guarantees a language-level persistencymodel could

provide and characterize their programmability and performance.

& PERSISTENT MEMORIES (PMS), such as Intel’s

upcoming 3DXPointmemory,1 offer the durability

of disk, better density than DRAM, and DRAM-like

performance. These properties have spawned

myriad efforts to adopt PM in computer systems.

A particularly disruptive potential PM use case is

to host in-memory recoverable data structures.

PMs blur the traditional divide between a byte-

addressable, volatile main memory, and a block-

addressable, persistent storage. This memory

allows programmers to directly manipulate rec-

overable data structures using processor loads

and stores, rather than relying on performance-

sapping software intermediaries like the operating

system and file system.2

Ensuring the recoverability of data structures

requires programmers to be able to control the

order stores reach PM.With out-of-order process-

ing and write-back caching, stores may reach PM

out of order, compromising data structure recov-

erability. Existing systems do not provide efficient

mechanisms to enforce the order in which stores

are written back. Recent work has proposed per-

sistency models to provide programmers an inter-

face to control the order persistent stores write

Digital Object Identifier 10.1109/MM.2019.2910821

Date of publication 16 April 2019; date of current version 8

May 2019.

Top Picks

94
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

to PM.3 Like prior work, we refer to the act of writ-

ing a store durably in PM as a persist.

While various persistency models have been

proposed, all of them have been specified at the

instruction set architecture (ISA) level.3,4 That is,

programmers must reason about recovery cor-

rectness at the abstraction of assembly instruc-

tions, an approach that is error prone and

imposes an unreasonable programmer burden.

The programmer must invoke ISA-specific mecha-

nisms to ensure persist order and often must rea-

son carefully about compiler optimizations that

may affect the relevant code. Since the ISAmecha-

nisms differ in sometimes subtle ways, it is hard

towrite portable recoverable programs.

Our recent work5, 6 has argued for a language-

level persistency model that encapsulates the ISA-

level persistency model to provide mechanisms

to specify the semantics of PMaccesses (including

with respect to program failures) as an integral

part of the programming language. Just as lan-

guage-level memory, consistency models enable

precise specification of memory access semantics

from concurrent threads, a language-level persis-

tencymodel provides a single, ISA-agnostic frame-

work for reasoning about persistency and can

enable portable recoverable software across lan-

guage implementations (compiler, runtime, ISA,

and hardware). Figure 1 contrasts prior appro-

aches tomemory persistencywith our approach.

This work explores how a language-level per-

sistency model might specify semantics for PM

state after a failure, providing a taxonomy of guar-

antees that a language-level persistency model

might provide. Stronger guarantees (e.g., failure-

atomicity of critical sections) make writing recov-

erable software easier but impose substantial

requirements on the implementation which entail

performance penalties. Weaker guarantees com-

plicate reasoning about recovery, but provide

greater implementation freedom and perfor-

mance. Weaker guarantees relax atomicity of criti-

cal sections and instead provide only ordering

guarantees for individual persists. Note that

ordering individual persists allows synthesis of

coarser granularities of atomicity via logging.

Reasoning about recovery can be greatly

simplified by providing failure atomicity over

sets of PM updates. Failure atomicity assures that

either all or none of a set’s updates are visible after

failure, reducing the state space recovery code

might observe. Atomicity (beyond a PM access

Figure 1. Prior works have proposed persistency models at the ISA-level, leading to programming

complexity and portability issues. We instead argue for an additional language-level persistency model

working in concert with the ISA-level persistency model to reduce programmer burden and improve

portability. (a) State of the art. (b) Our goal.

May/June 2019 95

granularity) can be achieved via numerous hardware

or software mechanisms (e.g., logging2). Prior work,

Atlas,7 argues to simplify recovery design by guaran-

teeing failure-atomicity of entire outermost critical

sections. However, we show the ATLAS approach

incurs significant performance penalty and provides

unclear semantics for PM updates outside critical

sections.

Instead, we propose persistency semantics

that provide precise failure-atomicity at the gran-

ularity of synchronization-free regions (SFRs)—

thread regions delimited by synchronization

operations or sys-

tem calls. Under

failure-atomic SFRs,

the state observed

by recovery always

conforms to the

program state at a

frontier of past

synchronization

operations on each

thread. In a well-

formed program,

SFRs must be data-

race free. This prop-

erty allows us to

extend the sequen-

tial consistency guaranteed for data-race-free pro-

grams to recovery code.

Programmerswould clearly prefer the coarsest

granularity of failure-atomicity that a language can

provide, as it simplifies PM programming. How-

ever, indications from hardware vendors (e.g.,

Intel8) are that future processors will only guaran-

tee atomicity for individual persists. Because the

compiler or runtime loggingmechanisms required

to ensure failure-atomicity must be general, they

cannot take advantage of data-structure-specific

optimizations (e.g., wait-free recoverable data

structures,9 static transactions10). Performance-

centric approaches are designed with the ratio-

nale that the language should provide the most

fundamental atomicity guarantee (individual per-

sists); software solutions (e.g., in expert-crafted

libraries) for larger atomic regions can be layered

on top to reduce programmer burden.

Even when providing atomicity guarantees

at the granularity of individual persists,

different models may vary in the kinds of

ordering guarantees they provide. Weaker

models place fewer restrictions on persist

order and can potentially deliver better perfor-

mance. We propose a concrete model,

acquire–release persistency (ARP), to extend

the Cþþ11 memory model, and describe the

compiler, ISA, and hardware features needed

to ensure that only the ordering guarantees

requested by the programmer at the language

level are enforced at runtime.

TAXONOMY OF LANGUAGE-LEVEL
PERSISTENCY MODELS

We explore different factors that should be

taken into account while designing a language-

level persistency model to develop a taxonomy

of guarantees that a language-level persistency

model may provide.

Our taxonomy considers two dimensions of

persistency model guarantees: 1) the granularity

of failure atomicity—the stores within a failure

atomic unit that appear to persist atomically (out-

ermost critical sections, SFRs, or individual

stores) and 2) the persist order of these failure-

atomic units (sequential consistency or epoch

ordering). Stronger guarantees (e.g., failure-atom-

icity of entire critical sections and sequential

consistency) make writing recoverable software

easier but impose substantial requirements on

the implementation, entailing performance penal-

ties. Weaker guarantees complicate reasoning

about recovery, but provide greater implementa-

tion freedom and performance. Next, we describe

interesting points in the design space laid out by

our taxonomy.

Sequentially Consistent Failure-Atomic Outer

Critical Sections

Under this approach, all the persists from an

outer critical section (from first lock acquire

until no locks are held) are guaranteed by the

language implementation to be failure atomic

[see Figure 2(a)]. Furthermore, different outer

critical sections must persist in sequentially con-

sistent order.

The idea of sequentially consistent failure-

atomic outer critical sections was first explored

by Chakrabarti et al.7 The central appeal of this

guarantee is that, by ensuring failure-atomicity of

We propose a concrete

model, acquire–release

persistency (ARP), to

extend the C++11

memory model, and

describe the compiler,

ISA, and hardware fea-

tures needed to ensure

that only the ordering

guarantees requested

by the programmer at

the language level are

enforced at runtime.

Top Picks

96 IEEE Micro

entire critical sections, the PM

state post-recovery always

reflects a state that would have

arisen in fault-free execution

and when no thread holds a

lock. Thus, no recovery code is

needed, the programmer is

assured that her data struc-

tures are always in a consistent

state postrecovery.

Sequentially Consistent

Failure-Atomic SFRs

Whereas atomicity of outer

critical sections is appealing, it

requires the implementation to

support atomicity guarantees

spanning multiple threads, since

critical sections can become

coupled through shared mem-

ory communication. Instead,

failure atomicity for SFRs guar-

antees atomicity only for code

regions between synchroniza-

tion accesses (or system calls) on a single thread

[see Figure 2(b)], ensuring such regions persist in a

sequentially consistent order. Because Cþþ
requires SFRs to be data race free, they may not

become coupled across threads, greatly simplifying

implementation.

For transaction-based programs or programs

without overlapping critical sections, SFRs and

critical sections are the same. However, for pro-

grams which have overlapping critical sections

[see Figure 2(b)], a critical section may span

SFRs. For such programs, partially completed crit-

ical sections may be visible postrecovery. While

developing recovery software, the programmer

must consider this possibility. If failure-atomicity

of outer critical sections is desired, the program-

mer must add roll-back mechanisms for partially

completed critical sections.

Sequentially Consistent Persists

Further relaxing atomicity guarantees leads

to a model where only individual stores persist

atomically and in a sequentially consistent

order [see Figure 2(c)]. In such a model, the

programmer must implement failure-atomicity

mechanisms in software if larger atomicity

granularities are required. The programmer

can rely on the sequentially consistent order

of persists while implementing the logging

mechanisms.

Epoch-Ordered Persists

One can construct even more relaxed persis-

tency models, which admit even greater concur-

rency and implementation freedom, by relaxing

the program ordering requirement of persists. In

suchmodels, individual stores persist atomically,

but need not persist in a sequentially consistent

order. Special sequence point annotations are

used by a programmer to break a thread into

epochs; persists across epochs are ordered, but

may be reordered within epochs. Persists on dif-

ferent threads are still governed by synchroniza-

tion order.

Models that relax sequential consistency for

persists may astonish programmers: the pro-

grammer must issue explicit sequence points

when ordering guarantees are required, compli-

cating the implementation of recoverable data

structures. Yet, relaxed atomics have long been a

part of the Cþþ programming language; epoch-

ordered persists provide a similar promise of

Figure 2. This figure shows the different granularities of failure atomicity that a

language could provide: (a) outer critical sections; (b) Synchronization-free-region

and (c) individual persists. Coarser granularities of failure-atomicity make it easier to

program, however, they impose higher performance overheads.

May/June 2019 97

performance at the cost of much higher program-

mer burden.

Having outlined a taxonomy of guarantees

that a language-level persistency model may

provide, we next summarize our two works5,6

that compare and contrast various ways to build

programmability centric and performance-

centric language-level persistency models.

DESIGNING PROGRAMMABILITY
CENTRIC LANGUAGE-LEVEL
PERSISTENCY

In our most recent work,6 we consider how to

develop programmability centric language-level per-

sistency models. The main factor that determines

ease of programming is the granularity of failure-

atomicity guaranteed by the language. Generally,

coarser granularity leads to easier programming as

it reduces the number of possible PM states a pro-

grammer must reason about. When the persistency

model guarantees atomicity only for individual per-

sists, recovery may observe PM state that could

never arise in fault-free execution. Prior work7 pro-

poses failure atomicity at the granularity of outer-

most critical sections. However, such an approach

provides unclear semantics for PM updates outside

critical sections, does not generalize to other syn-

chronization constructs (e.g., condition variables),

and requires high-overhead cycle detection among

critical sections on different threads to identify sets

that must be jointly failure-atomic.

Persistency for Synchronization Free Regions

We argue that failure-atomic SFRs strike a

compelling balance between programmability

and performance. Under failure-atomic SFRs, the

state observed by recovery will always conform

to the program state at a frontier of past synchro-

nization operations on each thread. In a well-

formed program, SFRs must be data-race free.

This property allows us to extend the SC-for-DRF

guarantee to recovery code, while avoiding the

disadvantages of critical-section-grain atomicity.

We extend the Cþþ memory model with per-

sistency semantics for multithreaded programs.

The Cþþ memory model uses interthread and

intrathread happens-before ordering prescribed

by acquire and release synchronization opera-

tions in multithreaded applications to order

memory accesses. We extend these guarantees

to ensure that the memory accesses within SFRs

become persistent in an order consistent with

the constraints on when they may become visi-

ble. We investigate two designs based on undo-

logging that provide failure-atomicity of SFRs

and vary in simplicity and performance.

Coupled-SFR design: In this design, the visibility

of the program state in volatile caches is coupled

with its persistent state in PM. The in-place PM

mutations are flushed at the end of each SFR and

the undo log is immediately committed. Before the

SFR’s terminal synchronization, a memory barrier

is emitted to ensure that all PM mutations persist

before any writes in the next SFR. Thus, the com-

mitted state lags the frontier of execution by at

most a single SFR; recovery rolls back to its start,

minimizing the state loss upon failure.

The central advantage of Coupled-SFR is

that each thread must track only log entries

for stores within its still-incomplete SFR, and

does not interact with any other thread. The

thread-private nature of our commit stands in

stark contrast to ATLAS, which must perform

a dependence analysis and cycle-detection

across all threads’ logs to identify log entries

that must commit atomically. Because

accesses within an SFR are data-race free,

there can be no dependencies among

accesses in uncommitted SFRs; all interthread

dependencies must be ordered by the syn-

chronization commencing the SFR, and,

hence, may depend only on committed state.

The PM state after recovery is easy to inter-

pret, as it conforms to the state at the latest

synchronization on each thread.

However, the downside of Coupled-SFR is

that the execution stalls at the end of the SFR

until all PM writes are flushed and the log is com-

mitted, potentially exposing much of PM persist

latency on the critical path.

Decoupled-SFR design: Alternatively, we can

decouple the visibility of updates (as governed

by cache coherence and the Cþþ memory

model) from the frontier of persistent state; that

is, we can allow persistent state to lag execu-

tion—an approach we call Decoupled-SFR.

To ensure that persistent state does not fall too

far behind (which risks losing forward progress

in the event of failure), we periodically invoke a

flush-and-commit mechanism, much like garbage

Top Picks

98 IEEE Micro

collection in managed languages. This mecha-

nism flushes in-place updates and commits logs.

Nevertheless, Decoupled-SFR must still assure

that recovery will roll PM state back to the prior

state that conforms to a frontier of synchroniza-

tion operations on each thread.

Recoverability requires that logs are pruned—

committing the updates in the corresponding

SFR—in the same order as the SFRs execute, else

the state after recovery will not correspond to a

state consistent with fault-free execution. As

such, our logging mechanism must log the hap-

pens-before ordering relations between SFRs (as

governed by the Cþþ memory model) and com-

mit according to this order. We record happens-

before by: 1) adding acquire/release annotations

to the per-thread logs, 2) maintaining per-thread

logs in program order (thereby capturing intra-

thread ordering), and 3) tracking order across

threads by maintaining a monotonic sequence

number across release/acquire pairs.

Each program thread has an accompanying

pruner thread that flushes mutations and com-

mits the log on its behalf. The pruner threads

are invoked periodically to commit and recycle

log space. In case of failure, undo logs are proc-

essed in reverse order to recover program state

to the start of committed SFRs.

Logging: We implement a compiler pass in

LLVM v3.6.0, which instruments synchronization

operations and PM accesses with undologging

operations. Our compiler pass emits code to con-

struct an undo log entry in PM for synchroniza-

tion operations and PM store operations within

the SFR. The log entry records the old value of PM

locations, before any mutation. The log entry is

then persisted by explicitly flushing it from vola-

tile caches to the PM. Next, our compiler pass

emits an ISA-level memory ordering barrier (to

order the flush with subsequent writes) and the

store operation that updates the persistent data

structure in place. These updates are then explic-

itly flushed and persisted, and the corresponding

undo log entries are committed. Our two atomic-

ity schemes described above enable persistency

semantics for SFRs, but differ in when and how

they perform these latter two steps.

Evaluation: We study a suite of seven write-

intensive multithreaded microbenchmarks and

benchmarks, used in prior studies.4 Owing to the

simple logging, Coupled-SFR results in an average

performance improvement of 63.2% over the

ATLAS design. Decoupled-SFR enables light-weight

recording of SFR order and performs flush and

commit operations off the critical execution path.

As a result, Decoupled-SFR leads to a further per-

formance improvement of 50.1% over Coupled-SFR.

DESIGNING PERFORMANCE-
CENTRIC LANGUAGE-LEVEL
PERSISTENCY

In earlier work,5 wedelveddeeper intobuilding

performance-centric language-level persistency.

Whereas guaranteeing failure-atomicity only for

individual persists is a first step in building high-

performance persistency implementations, we

also show how relaxing ordering requirements

between individual persists also plays a major

role in improving performance. To this end, we

proposed ARP, a language-level persistencymodel

that extends the Cþþ11memory model and intro-

duced hardware extensions to minimize unneces-

sary ordering restrictions that arise from

translating the language-level persistency model

to the ISA-level persist orderingmechanisms.

We describe two major sources of unneces-

sary persist ordering restrictions and describe

how ARP mitigates them.

Fence directionality: Whereas ARP (and the

Cþþ11 memory model) is based on release consis-

tency, the ISA-level persistency model on the ARM

systems we target is based on the more conserva-

tive ARMv7 consistencymodel.4 Hence, its ISA-level

model is oblivious to unidirectional acquire and

release operations that are available in Cþþ11 and

ISAs based on release consistency (e.g., ARMv8).

ARP allows programmers to use unidirectional

synchronization operations (acq and rel) to order

memory accesses. Both acq and rel operations are

usually used to ensure memory accesses within a

critical section do not “leak out,” however, they

allow memory accesses from outside the critical

section to “leak into” the critical section. But as

ARMv7 does not distinguish between an acq and a

rel, compilers are forced to use a full fence for

both, which precludes memory access reordering

in both directions, leading to unnecessary con-

straints as shown in Figure 3(a). A thread performs

stores to three persistent addresses, A, B, and C.

The stores to A and B are separated by an acq,

May/June 2019 99

while stores to B and C are separated by a rel. As

per the semantics of ARP, all three are considered

concurrent and may execute and persist in any

order. However, replacing the acq and rel with a

full fence requires that persists to A, B, and C are

serialized. Such overconstraints on persist order

arise whenever the ISA-level persistency model is

stricter than the language-level model.

Conflating synchronization with recoverability:

The second set of unnecessary constraints are

caused by the lack of mechanisms to allow pro-

grammers to distinguish constraints required for

concurrency control, but not for recoverability.

Consider the case in Figure 3(b), where two unre-

lated threads (p_thread and v_thread) issue mem-

ory accesses. ISA-level persistency serializes

persists and fences from all cores into the write

queue at the PM controller.4 So, if the acq from

v_thread happens to arrive at the PM controller

between the two persists requests from p_thread,

then the PM controller will place them in different

epochs—an overconstraint.

Ideally, we would like the hardware to enforce

only constraints required for recovery. We

observe that programmers can identify acq and

rel memory operations that have no persist

semantics (i.e., they are required only for concur-

rency control). For example, some threads may

never issue any persist operations and communi-

cate only among themselves.11 With minor exten-

sions to the Cþþ11memorymodel, programmers

can annotate acq and rel that do not have persist

semantics as nonpersistent or “volatile” and the

hardware will not enforce associated persist

constraints.

Discussion: Mitigating the two sources of

unnecessary persist constraints allows more

persists to join each epoch at the PM controller.

Larger epochs in turn provide greater flexibility

to schedule and batch persist operations,

improving persist concurrency, leading to sub-

stantial performance gains.

Evaluation: We study a suite of seven write-

intensive multithreaded microbenchmarks and

benchmarks, used in prior studies.10 Overall, ARP

improves microbenchmark execution time by

32.4% as compared to SCP and 21.2% as compared

to the baseline ISA-level persistency model. For the

macrobenchmarks, ARP improves execution time

of the three benchmarks by 24.3% and 15.5% over

SCP and ISA-level persistencymodel, respectively.

IMPACT

Advent of Byte-Addressable Persistent

Memory is Now

We anticipate that systems incorporating

high-performance byte-addressable PMs will

become widely available within a few years. Intel

and Micron have already made announcements

regarding their 3D XPoint memory technology

and competing offerings will likely soon follow.

Indeed, as cost and yield improve, such memo-

ries may become ubiquitous across the comput-

ing spectrum: they may become the preferred

storage for small devices in the Internet of

Things and similarly may become critical to per-

formance and recoverability in cloud systems.

Programs written for such systems will have to

manage the transfer of data between volatile

and persistent domains (for example, a volatile

Figure 3. (a) Unnecessary constraints enforced due to fence directionality obliviousness. (b) Unnecessary

constraints enforced due to lack of support to identify volatile fences.

Top Picks

100 IEEE Micro

cache hierarchy and persistent main memory).

The correctness of recoverable data structures

relies on guaranteeing the order of durable

writes, the primary focus of our work.

Memory Persistency Must Be Guaranteed End-

to-End, From the Language to the Hardware
Both industry8 and academia3,4 have proposed

candidate persistency models that rely on lower

level hardware ISA

primitives to pre-

scribe order over

PM updates. These

approaches require

that programmers

must invoke ISA-

specific mecha-

nisms (via library

calls or inline

assembly) to ensure

the desired order of

PM updates and

that they reason

carefully about com-

piler optimizations

that may affect the relevant code. Our

community’s experience with ISA-level memory

consistency models makes us well aware of the

severe portability and programmability challenges

that arise with this approach.

This work argues for a language-level persis-

tency model that provides mechanisms to specify

the semantics of PM accesses (including with

respect to program failures) as an integral part of

the programming language, just as language-level

memory consistencymodels enable precise speci-

fication of the semantics ofmemory accesses from

concurrent threads. A language-level persistency

model enables portable recoverable software

across different ISAs, hardware, runtimes, and

compilers and also provides a single, ISA-agnostic

framework for reasoning about recoverability.

Furthermore, a language-level model allows soft-

ware and hardware implementations to be devel-

oped and tested independently, significantly

simplifying design-test-debug cycles.

Need to Drive Industry to Provide Better

Programming Models

Whereas the first commercial PM chips are

slated for release within a year, surprisingly little

consensus can be found between industry and

academia on the best programming interfaces for

PMs. To further muddy the waters, Intel recently

announced that it will deprecate the newly pro-

posed pcommit instruction before it is even

released in any commercial product.12 Exploratory

studies, such as our work, that seek to understand

the implications of the semantics of various mem-

ory persistency models on system architecture,

programmability, and performance have the

potential to guide the direction taken by industry.

For example, the RISC-V memory model is only

now being formalized—there is an urgent opportu-

nity for academics to ensure that we get memory

persistency for RISC-V right.

Follow-on Research

Our language-level persistency model can influ-

ence a wide spectrum of future research. First, it

can enable portable recoverable software. Pro-

grammers can build the software systems by rely-

ing on persistency guarantees as part of the high-

level language. Second, our persistency model can

be used to design recovery mechanisms for gen-

eral programming systems. Our compiler imple-

mentation emits logging for PM updates and

synchronization operations to enable SFR failure-

atomicity transparently. Finally, failure-atomic

SFRs do not expose non-SC state to recovery.

Novel compiler or hardware solutions can be built

to leverage reordering or coalescing opportunities

for PM accesses within SFRs.

& REFERENCES

1. Intel and Micron, “Intel and Micron Produce

Breakthrough Memory Technology,” 2015. [Online].

Available: http://newsroom.intel.com/community/

intel_newsroom/blog/2015/07/28/intel-and-micron-

produce-breakthrough-memory-technology

2. J. Coburn et al., “NV-Heaps: Making persistent

objects fast and safe with next-generation, non-

volatile memories,” in Proc. 16th Int. Conf. Archit.

Support Program. Lang. Operating Syst., 2011,

pp. 105–118.

3. S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory

persistency,” in Proc. 41st Annu. Int. Symp. Comput.

Archit., 2014, pp. 265–276.

4. A. Kolli et al., “Delegated persist ordering,” in Proc. 49th

Annu. IEEE/ACM Int. Symp.Microarchit., 2016, Art. No. 58 .

We anticipate that

systems incorporating

high-performance

byte-addressable PMs

will become widely

available within a few

years. Intel and Micron

have already made

announcements

regarding their 3D

XPoint memory

technology and

competing offerings

will likely soon follow.

May/June 2019 101

http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology

5. A. Kolli et al., “Language-level persistency,” inProc. 44th

Annu. Int. Symp. Comput. Archit., 2017, pp. 481–493.

6. V. Gogte et al., “Persistency for synchronization-free

regions,” in Proc. 39th ACM SIGPLAN Conf. Program.

Lang. Des. Implementation, 2018, pp. 46–61.

7. D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari,

“Atlas: Leveraging locks for non-volatile memory

consistency,” in Proc. ACM Int. Conf. Object Oriented

Program. Syst. Lang. Appl., 2014, pp. 433–452.

8. Intel 2019, “Intel 64 and IA-32 Architectures Software

Developer Manuals.” 2019. [Online]. Available: https://

software.intel.com/en-us/articles/intel-sdm

9. F. Nawab, D. Chakrabarti, T. Kelly, and C. B. Morey III,

“Procrastination beats prevention: Timely sufficient

persistence for efficient crash resilience,” Hewlett-

Packard Tech. Rep. HPL-2014-70, 2014.

10. A. Kolli, S. Pelley, A. Saidi, M. C. Peter, and

F. W. Thomas, “High-performance transactions for

persistent memories,” in Proc. 21st Int. Conf. Archit.

Support Program. Lang. Oper. Syst., 2016,

pp. 399–411.

11. C. Blundell, M. M. K. Martin, and T. F. Wenisch,

“InvisiFence: Performance-transparentmemory

ordering in conventionalmultiprocessors,” inProc. 36th

Annu. Int. Symp. Comput. Archit., 2009, pp. 233–244.

12. Intel, “Deprecating the PCOMMIT instruction.” 2016.

[Online]. Available: https://software.intel.com/en-us/

blogs/2016/09/12/deprecate-pcommit-instruction

Aasheesh Kolli is an assistant professor of com-

puter science and engineering at the Pennsylvania

State University, State College, and an affiliated

researcher with VMware Research.

Vaibhav Gogte is currently a PhD in computer

science and engineering at the University of Michigan.

Ali Saidi is a principal engineer at Amazon Web

Services, Seattle. This work was done while he was

ARM Research, Cambridge, U.K.

Stephan Diestelhorst is a principal research

engineer and Skill Group Lead at Arm Research,

Cambridge, U.K.

William Wang is the Arthur F. Thurnau Professor of

computer science and engineering at the University

of Michigan.

Peter M. Chen is a Staff Research Engineer at Arm

Research, Cambridge, U.K.

Satish Narayanasamy is an associate professor

of computer science and engineering at the Univer-

sity of Michigan.

Thomas F. Wenisch is an associate professor of

computer science and engineering at the University of

Michigan.

Top Picks

102 IEEE Micro

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

