
1

Failure-atomic Synchronization-free Regions
V. Gogte∗, S. Diestelhorst†, W. Wang†, S. Narayanasamy∗, P. M. Chen∗, T. F. Wenisch∗

∗University of Michigan {vgogte,nsatish,pmchen,twenisch}@umich.edu
†ARM {stephan.diestelhorst,william.wang}@arm.com

I. INTRODUCTION

Emerging persistent memory (PM) technologies, such as
Intel and Micron’s 3D XPoint, aim to combine the byte-
addressability of DRAM with the durability of storage. The
promise of PM is to enable data structures that provide the
convenience and performance of in-place load-store manipula-
tion, and yet persist across failures, such as power interruptions
and OS or program crashes. Following such a crash, volatile
program state (DRAM, program counters, registers, etc.) are
lost, but PM state is preserved. A recovery process can then
examine the PM state, reconstruct required volatile state, and
resume program execution.

Reasoning about the correctness of recovery code requires
precise semantics for the allowable PM state after a failure.
Specifying such semantics is complicated by the desire to
support concurrent PM accesses from multiple threads and
optimizations that reorder or coalesce accesses. The state
observed at recovery can be greatly simplified by providing
failure atomicity of sets of PM updates. Failure atomicity
assures that either all or none of the updates in a set are
visible after failure, reducing the state space recovery code
might observe.

Recent work has proposed memory persistency models
to provide programmers with such semantics [1]–[3]. Like
previous works, we refer to the act of writing the value of
a store operation to PM as a persist. Similar to memory
consistency models, which govern the visibility of writes
to shared memory, persistency models govern the order of
persists to PM. Most of these persistency models [1]–[3]
have been specified at the abstraction level of the hardware
instruction set architecture (ISA). Such ISA-level persistency
models do not specify semantics for higher-level languages,
where compiler optimizations may also reorder or elide PM
reads and writes.

We first discuss existing proposals that add persistency
semantics to the language memory model. In particular, AT-
LAS [4] and acquire-release persistency (ARP) [5], [6] extend
the C++ memory model with persistency semantics. The two
proposals differ in the granularity of failure atomicity they
guarantee and rely on different synchronization primitives to
ensure correct persist ordering in PM.

ATLAS: ATLAS [4] provides persistency semantics for
lock-based multi-threaded C++ programs. It guarantees failure
atomicity at the granularity of an outermost critical section,
as shown in Figure 1(a), where a critical section is the
code bounded by lock and unlock synchronization primitives.
Failure-atomicity of critical sections guarantees that recovery
may only observe sequentially consistent PM state. However,
we argue that this approach suffers from three key deficiencies:
(1) its semantics are unclear for PM updates outside critical

l1.lock()
 …

 l2.lock()
 …
 l2.unlock()

 …
l1.unlock()

O
ut

er
m

os
t C

S

l1.lock()
 …

 l2.lock()
 …
 l2.unlock()

 …
l1.unlock()

Epoch

Epoch

Epoch

l1.lock()
 …

 l2.lock()
 …
 l2.unlock()

 …
l1.unlock()

SFR1

SFR2

SFR3

(a) (b1) (c)

/* tail: tail pointer of
 the linked-list */

createNode(val)
 N = new Node(val);
 l1.lock();
 tail->next = N;
 tail = N;
 l1.unlock()

Ep
oc

h

Failure

(b2)

Fig. 1: Failure-atomicity in ATLAS, ARP and our proposal.

sections, (2) it does not generalize to other synchronization
constructs (e.g., condition variables), and (3) it requires expen-
sive cycle detection among critical sections on different threads
to identify sets that must be jointly failure-atomic, which leads
to high overhead.

ARP: ARP [5] proposes extending the memory models of
high-level languages, like C++11 and Java, with persistency
semantics. ARP ascribes persists to ordered epochs using
intra- and inter-thread ordering constraints prescribed via
acquire and release synchronization operations. As shown in
Figure 1(b1), ARP may re-order persists within epochs but
disallows reordering across epochs. Although ARP bounds
the latest point at which a PM store may persist, it does not
preclude PM stores from persisting early, ahead of preceding
accesses in memory (visibility) order. Figure 1(b2) shows
example code to append a new node to a persistent linked-list.
As ARP does not constrain the durability of the two updates
before the completion of the epoch, the update to tail may
become durable earlier than the update to tail->next. In
case of a failure, an incomplete update to the tail pointer
will result in an inconsistent linked-list. As such, the set of
states a recovery program might observe includes many states
that (1) do not correspond to SC program executions, and (2)
could never arise in a fault-free execution, posing a daunting
challenge for recovery design.

Instead, we propose persistency semantics that provide pre-
cise failure-atomicity at the granularity of synchronization free
regions (SFRs)—thread regions delimited by synchronization
operations or system calls, as shown in Figure 1(c). In the
absence of SFR atomicity, recovery may observe PM state
that could never arise in fault-free execution (similar to ARP).
Under failure-atomic SFRs, the state observed by recovery
will always conform to the program state at a frontier of
past synchronization operations on each thread. We argue
that failure-atomic SFRs strike a compelling balance between
programmability and performance. In a well-formed program,
SFRs must be data-race free. This property allows us to extend
the SC-for-DRF guarantee to recovery code and avoid the
unclear semantics of ARP. Moreover, our approach avoids the
limitations of ATLAS-like approaches.

II. FAILURE-ATOMICITY OF SFRS

We extend the C++ memory model with durability seman-
tics for multi-threaded programs. The C++ memory model
uses inter-thread and intra-thread happens-before ordering
prescribed by acquire and release synchronization operations
in multi-threaded applications to order memory accesses. We
extend these guarantees to ensure that the memory accesses
within SFRs become persistent in an order consistent with
the constraints on when they may become visible. We investi-
gate two designs based on undo-logging that provide failure-
atomicity of SFRs and vary in simplicity and performance.

Logging: We implement a compiler pass in LLVM v3.6.0,
which instruments synchronization operations and PM ac-
cesses with undo-logging operations. For the synchronization
operation that begins an SFR, and every PM store operation
within the SFR, our compiler pass emits code to construct an
undo log entry in PM. The log entry records the values PM
locations had at the start of the SFR, before any mutation. The
log entry is then persisted by explicitly flushing it from volatile
caches to the PM. Next, our compiler pass emits an ISA-level
memory ordering barrier (to order the flush with subsequent
writes) and the store operation that updates the persistent data
structure in place. These updates are then explicitly flushed
and persisted, and the corresponding undo log entries are
committed. Our two atomicity schemes differ in when and
how they perform these latter two steps.

Coupled-SFR design: In this design, the visibility of the
program state in volatile caches is coupled with its persistent
state in PM. The in-place PM mutations are flushed at the
end of each SFR and the undo log is immediately committed.
Before the SFR’s terminal synchronization, a memory barrier
is emitted to ensure that all PM mutations persist before any
writes in the next SFR. Thus, the committed state lags the
frontier of execution by at most a single SFR; recovery rolls
back to its start, minimizing state loss upon failure.

The central advantage of Coupled-SFR is that each thread
must track only log entries for stores within its still-incomplete
SFR, and does not interact with any other thread. The thread-
private nature of our commit stands in stark contrast to
ATLAS, which must perform a dependency analysis and
cycle-detection across all threads’ logs to identify log entries
that must commit atomically. Because accesses within SFRs
must be data-race free, there can be no dependences between
accesses in uncommitted SFRs; all inter-thread dependencies
must be ordered by the synchronization commencing the SFR,
and hence may depend only on committed state. The PM state
after recovery is easy to interpret, as it conforms to the state
at the latest synchronization on each thread.

However, the downside of Coupled-SFR is that the execu-
tion stalls at the end of the SFR until all PM writes are flushed
and the log is committed, potentially exposing much of PM
persist latency on the critical path.

Decoupled-SFR design: Instead, we decouple the visibility
of updates (as governed by cache coherence and the C++
memory model) from the frontier of persistent state; that is,
we can allow persistent state to lag execution—an approach
we call Decoupled-SFR. To ensure that persistent state does

not fall too far behind (which risks losing forward progress
in the event of failure), we periodically invoke a flush-and-
commit mechanism, much like garbage collection in managed
languages. This mechanism flushes in-place updates and com-
mits logs. Nevertheless, Decoupled-SFR must still assure that
recovery will roll PM state back to the prior state that conforms
to a frontier of synchronization operations on each thread.

Recoverability requires that logs are pruned—committing
the updates in the corresponding SFR—in the same order
as the SFRs execute, else the state after recovery will not
correspond to a state consistent with fault-free execution. As
such, our logging mechanism must log the happens-before
ordering relations between SFRs (as governed by the C++11
memory model) and commit according to this order. We record
happens-before by: (1) adding acquire / release annotations
to the per-thread logs, (2) maintaining per-thread logs in
program order (thereby capturing intra-thread ordering), and
(3) tracking order across threads by maintaining a monotonic
sequence number across release / acquire pairs.

Each program thread has an accompanying pruner thread
that flushes mutations and commits the log on its behalf. Like
garbage-collection, pruner threads are invoked periodically to
commit and recycle log space. In case of failure, undo logs
are processed in reverse order to recover program state to the
start of committed SFRs.

III. EVALUATION

We implement a compiler pass that can emit code for both
our logging approaches in LLVM v3.6.0. We study a suite
of seven write-intensive multi-threaded micro-benchmarks and
benchmarks, used in prior studies [5]. Due to space limitation,
we list only the average improvement obtained in our designs.

Owing to the simple logging, Coupled-SFR results in an
average performance improvement of 63.2% over the ATLAS
design. Decoupled-SFR enables light-weight recording of SFR
order and performs flush and commit operations off the critical
execution path. As a result, Decoupled-SFR leads to a further
performance improvement of 50.1% over Coupled-SFR.

We next evaluate the cost of the background activity
required by both ATLAS and Decoupled-SFR to commit
their logs. Although the pruner/helper threads do not delay
execution on the critical path, they nonetheless consume
additional CPU resources. Overall, we find that Coupled-SFR
and Decoupled-SFR have 72.1% lower and 33.2% lower CPU-
cost per throughput than ATLAS.

REFERENCES

[1] Intel, “Instruction set extensions programming reference.” https://
software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf.

[2] ARM, “Armv8-a architecture evolution,” 2016. https://community.arm.
com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution.

[3] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ISCA
’14.

[4] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in OOPSLA ’14.

[5] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
ISCA ’17.

[6] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Tarp: Translating acquire-release
persistency,” 2017. http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1.

2

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1

	Introduction
	Failure-atomicity of SFRs
	Evaluation
	References

