
Software Wear Management 
for Persistent Memories

Vaibhav Gogte, William Wang1, Stephan Diestelhorst1, Aasheesh Kolli2,3, 
Peter M. Chen, Satish Narayanasamy, Thomas F. Wenisch

FAST’19
02/26/2019

3

1

2



Promise of persistent memory (PM)

2

Non-volatility

Performance

Density



Promise of persistent memory (PM)

PM for capacity expansion

3

PM cheaper and denser than DRAM

Non-volatility

Performance

Density



Promise of persistent memory (PM)

PM for capacity expansion

4

PM as storage

PM cheaper and denser than DRAM

PM enables faster storage via load-store interface
Non-volatility

Performance

Density



PMs have low write endurance

CPU

PM

1
2
31
2
3

Wear-leveling mechanisms
• PM cells wear out after 107 – 109 writes [Lee ‘09]

5



PMs have low write endurance

CPU

PM

1
2
3
2

Wear-leveling mechanisms

Remap locations to uniformly 
distribute writes

• PM cells wear out after 107 – 109 writes [Lee ‘09]

6



DRAM

PMs have low write endurance
Wear-leveling mechanisms

CPU

PM

1
2
3

Wear-reduction mechanisms

Remap locations to uniformly 
distribute writes

• PM cells wear out after 107 – 109 writes [Lee ‘09]

7

CPU

PM

1
2
3
2



DRAM

PMs have low write endurance
Wear-leveling mechanisms

CPU

PM

1
2
3

Wear-reduction mechanisms

Remap locations to uniformly 
distribute writes

• PM cells wear out after 107 – 109 writes [Lee ‘09]

8

Map heavily written locations to DRAM

CPU

PM

1
2
3
2



Wear management in software
• Prior proposals measure PM wear in hardware [Qureshi ‘09, Ramos ‘11, …]

– Wear leveling: Add latency of additional translation layer
– Wear reduction: Require specialized memory controllers

• Our proposal: Wear-aware virtual memory system
– Employ virtual-to-physical page mappings to manage wear
– Eliminates need for another translation layer
– Require no special hardware to measure PM wear

9

Challenge: Measurement of PM writes at a page granularity in software



Contributions

10

Kevlar achieves PM lifetime target of 4 years with 1.2% performance overhead

Wear leveling

Wear reduction

Periodically remaps virtual-to-physical mappings 

Migrates heavily written pages to high endurance mem.

Estimates per page wear in software

Analytical framework Simple remapping achieves near-uniform wear

Wear estimation



Wear leveling uniformly wears out PM pages
• Periodically shuffle memory footprint to spread writes uniformly in PM

11

PM

1
2

4
3

Shuffle 1
Virtual pages Physical pages

Reassign each virtual page to a randomly chosen physical page



Wear leveling uniformly wears out PM pages
• Periodically shuffle memory footprint to spread writes uniformly in PM

12

PM

1
2

4
3

Shuffle 1
Virtual pages Physical pages

Swap contents in physical pages during the shuffle

Reassign each virtual page to a randomly chosen physical page



Wear leveling uniformly wears out PM pages
• Periodically shuffle memory footprint to spread writes uniformly in PM

13

PM

1
2

4
3

Shuffle 1
Virtual pages Physical pages

Swap contents in physical pages during the shuffle

Reassign each virtual page to a randomly chosen physical page



Wear leveling uniformly wears out PM pages
• Periodically shuffle memory footprint to spread writes uniformly in PM

14

PM

1
2

4
3

After N shuffles
Virtual pages Physical pages

Disparity in page wear shrinks as shuffles increase

Are random shuffles enough to achieve near-uniform wear?

Ø Does not require measurement of per page wear

Ø Depends on average PM write bandwidth



PM lifetime due to random shuffles
• Using analytical framework to determine no. of shuffles

– Get write traces of applications using instrumentation
– Evaluate wear to pages as number of shuffles increase

15

More details in the paper!



0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

N
or

m
al

iz
ed

 li
fe

tim
e

Number of Shuffles à

Aerospike
Memcached
TPCC
TATP
Redis
Echo
Ideal

PM lifetime due to random shuffles
• Using analytical framework to determine no. of shuffles

– Get write traces of applications using instrumentation
– Evaluate wear to pages as number of shuffles increase

16

More details in the paper!



0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

N
or

m
al

iz
ed

 li
fe

tim
e

Number of Shuffles à

Aerospike
Memcached
TPCC
TATP
Redis
Echo
Ideal

PM lifetime due to random shuffles
• Using analytical framework to determine no. of shuffles

– Get write traces of applications using instrumentation
– Evaluate wear to pages as number of shuffles increase

17

More details in the paper!

Lifetime improves with the increasing number of shuffles < 8192



0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

N
or

m
al

iz
ed

 li
fe

tim
e

Number of Shuffles à

Aerospike
Memcached
TPCC
TATP
Redis
Echo
Ideal

PM lifetime due to random shuffles
• Using analytical framework to determine no. of shuffles

– Get write traces of applications using instrumentation
– Evaluate wear to pages as number of shuffles increase

18

More details in the paper!

Writes due to shuffles dwarf application writes for > 8192 shuffles



0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

N
or

m
al

iz
ed

 li
fe

tim
e

Number of Shuffles à

Aerospike
Memcached
TPCC
TATP
Redis
Echo
Ideal

PM lifetime due to random shuffles
• Using analytical framework to determine no. of shuffles

– Get write traces of applications using instrumentation
– Evaluate wear to pages as number of shuffles increase

19

More details in the paper!

Kevlar achieves 94% ideal-wear with 8192 shuffles over PM lifetime



Wear leveling alone is not enough

20

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

Li
fe

tim
e 

(in
 y

ea
rs

)

Number of Shuffles à

Aerospike
Memcached
TPCC
TATP
Redis
Echo

Lifetime achieved due to wear leveling alone is limited by PM write bandwidth

• Wear leveling improves PM lifetime to 2.0 – 2.8 years
– Insufficient to meet system lifetime targets (eg. 4 or 6 years)



Wear reduction in Kevlar 
• Improves PM lifetime to a configurable target
• Limits PM write bandwidth to meet lifetime target

• Performs page migrations to high endurance memory

21

Kevlar requires per page writeback rate to perform page migrations

PM_bandwidth = -./012.34 × ._62748
9:;4<:=4

=	20K	writes/sec/GB

Eg. For desired lifetime = 4yrs, PM endurance = 107:



Measuring PM page writes is challenging
• PM writes are a result of cache writebacks

22

Existing systems provide no mechanisms to measure per-page writebacks

Core

PM

Cache

STR

Stores update cache lines

Writebacks happen due to cache line conflicts
WB



Modeling caches to measure PM writebacks

• Precise modeling of caches in software expensive

• Kevlar builds an approximate cache model

23

Observe stores using hardware performance counters

Approximately track set of dirty cache blocks using bloom filter

Estimate PM writebacks using cache blocks in bloom filter



Using PEBS to sample stores 

24

• Employs Intel’s Precise-Event-Based-Sampling (PEBS) counters
• Configures PEBS to record arch. state for retiring stores

Core

Triggers a PEBS interrupt PEBS Record 0
Store addr

PEBS record maintains the virtual 
address of a sampled store

STR

Optimization: Samples one every 17th stores to reduce monitoring overhead



Kevlar approximates caches to estimate wear

25

• Estimates temporal locality in application’s access pattern
• Uses bloom filter to track dirty blocks in hardware cache

Bloom Filter

1. Sizes bloom filter to match LLC size



Kevlar approximates caches to estimate wear

26

• Estimates temporal locality in application’s access pattern
• Uses bloom filter to track dirty blocks in hardware cache

Bloom FilterStore addr

2. Adds address to the filter on first store

1. Sizes bloom filter to match LLC size



Kevlar approximates caches to estimate wear

27

• Estimates temporal locality in application’s access pattern
• Uses bloom filter to track dirty blocks in hardware cache

Bloom FilterStore addr

2. Adds address to the filter on first store

1. Sizes bloom filter to match LLC size

3. Increments WB count on first store

Write_back[page]++

Estimated writeback count



Bloom filters cleared when they are full

28

• Maintains number of cache blocks equal to size of last-level cache
– Clearing bloom filter causes false spike in measured writebacks

BloomFilter0

N = 0 N = CacheSize/2 N = CacheSize

BloomFilter1

BloomFilter0

BloomFilter1

BloomFilter0

BloomFilter1

Kevlar uses estimated writebacks per page to perform page migrations



Kevlar migrates heavily written pages to DRAM 
• Limits PM write bandwidth to 20K writes/sec for 4 year lifetime target
• Migrates top 10% freq. written pages to DRAM

29

PMDRAM



Kevlar migrates heavily written pages to DRAM 
• Limits PM write bandwidth to 20K writes/sec for 4 year lifetime target
• Migrates top 10% freq. written pages to DRAM

30

PMDRAM

Pages sorted by per 
page write rate



Kevlar migrates heavily written pages to DRAM 
• Limits PM write bandwidth to 20K writes/sec for 4 year lifetime target
• Migrates top 10% freq. written pages to DRAM

31

PMDRAM

Migrates pages 
to DRAM Pages sorted by per 

page write rate

Optimization: Kevlar disables PEBS counters when write rate is < 20K writes/sec



Kevlar detects changes in access pattern
• Detects PM write rate below 20K writes/sec for 5 consecutive intervals
• Re-enables PEBS monitoring to migrate least 10% written pages to PM

32

PMDRAM

Pages sorted by 
per page write rate



Kevlar detects changes in access pattern
• Detects PM write rate below 20K writes/sec for 5 consecutive intervals
• Re-enables PEBS monitoring to migrate least 10% written pages to PM

33

PMDRAM

Migrates pages 
to PMPages sorted by 

per page write rate



Methodology
• Prototyped in Linux 4.5
• Intel Xeon E5-2699 v3, 72 hardware threads
• Caches: 32KB L1 D&I, 256KB L2, 45MB LLC
• Linux cgroups to isolate cores and memory for server threads
• PM fails after 1% pages suffer 107 writes

34

Server CPU

DRAM 
256GB

PM 
256GB

Socket 0 Socket 1

QPI



88
78

67

94

63

96
80

0

20

40

60

80

100

Aerospike Memcached TPCC TATP Redis Echo Mean

Ac
cu

ra
cy

 (%
)

Accuracy of wear estimation

35

Kevlar can correctly detect 80% of top 10% heavily written pages in PM

Capacity workloads Persistency workloads



0
1
2
3
4
5
6

Aerospike Memcached TPCC TATP Redis Echo Mean

Li
fe

tim
e 

(in
 y

ea
rs

)

No wear-mgmt. Ideal WL WL WL+WR

PM device lifetime

36

PM wears out in 1.1 months in absence of wear-management mechanisms



Ideal wear leveling shows lifetime for an oracle design that achieves uniform wear 

0
1
2
3
4
5
6

Aerospike Memcached TPCC TATP Redis Echo Mean

Li
fe

tim
e 

(in
 y

ea
rs

)

No wear-mgmt. Ideal WL WL WL+WR

PM device lifetime

37



Kevlar improves PM lifetime by 9.8x as compared to the design without wear-mgmt. 

0
1
2
3
4
5
6

Aerospike Memcached TPCC TATP Redis Echo Mean

Li
fe

tim
e 

(in
 y

ea
rs

)

No wear-mgmt. Ideal WL WL WL+WR

PM device lifetime

38



0
1
2
3
4
5
6

Aerospike Memcached TPCC TATP Redis Echo Mean

Li
fe

tim
e 

(in
 y

ea
rs

)

No wear-mgmt. Ideal WL WL WL+WR

PM device lifetime

39

Kevlar limits PM write bandwidth to achieve lifetime target of 4 years



Kevlar performance overhead

40

0
0.5

1
1.5

2
2.5

3

Aerospike Memcached TPCC TATP Redis Echo Mean

Sl
ow

do
w

n 
(%

)

WL WL+Monitoring WL+WR

Wear leveling alone incurs a negligible performance overhead of 0.04%



Kevlar’s monitoring based on PEBS counters incur a performance overhead of 0.8% (avg.)

Kevlar performance overhead

41

0
0.5

1
1.5

2
2.5

3

Aerospike Memcached TPCC TATP Redis Echo Mean

Sl
ow

do
w

n 
(%

)

WL WL+Monitoring WL+WR



Kevlar additionally incurs a 1.2% slowdown due to page migrations between DRAM and PM

Kevlar performance overhead

42

0
0.5

1
1.5

2
2.5

3

Aerospike Memcached TPCC TATP Redis Echo Mean

Sl
ow

do
w

n 
(%

)

WL WL+Monitoring WL+WR



Conclusion

43

Wear leveling

Wear reduction

Analytical framework

Wear estimation

Remaps pages in PM

Performs page migrations

Estimates per page wear

Simple remaps achieve near-ideal wear

Simple software mechanisms achieve > 4yr lifetime with 1.2% perf. overhead



Software Wear Management 
for Persistent Memories

Vaibhav Gogte, William Wang1, Stephan Diestelhorst1, Aasheesh Kolli2,3, 
Peter M. Chen, Satish Narayanasamy, Thomas F. Wenisch

FAST’19
02/26/2019

3

1

2


